
Critical Design Review

Submitted to

Dr. Janiszewska

Prepared by

Matthew Geiger

Nick Stassen

Ben Bazan

Engineering 1182

The Ohio State University

College of Engineering

Newark, OH

April 21st, 2022

Table of Contents

List of Figures and Table...pg. #3-4

Executive Summary …...pg. #5

Introduction …..pg. #6

AEV Initial Concepts …...pg. #6-7

Results and Discussion …..pg. #7-25

Conclusions and Recommendations …..pg. #25-26

Appendix …...pg. #26-29

Division of Work Statement …..pg. #29

Code ...pg. #30-42

List of figures

Figure 1. Orthographic projection of design model B (Nick Stassen’s design) …............pg. #7

Figure 2. AEV Design 1 Solidworks model …..pg. #7

Figure 3. AEV Design 2 Solidworks model …...pg. #8

Figure 4. Orthographic projection of design model A (Ben Bazan’s design) …...............pg. #9

Figure 5. Orthographic projection of design model C (Matthew Geiger’s design)pg. #9

Figure 6. Describes the AEV flat track run, supplied power versus time, using celerate
commands, along with a phase breakdown …...pg. #12

Figure 7. Describes the AEV flat track run, with supplied power versus time, using motorSpeed
commands. Along with a phase break down …...pg. #12

Figure 8. System Efficiency vs. Advanced Ratio graph …...pg. #13

Figure 9. Supplied Power vs. Time (with phase breakdowns) for design 1 Half-track run.pg. #14

Figure 10. Supplied Power vs. Time (with phase breakdowns) for design 2 Half-track runpg #15

Figure 11. Supplied Power vs. Distance (both designs plotted together) ….....................pg. #16

Figure 12. Solidworks model for servo hook …...pg. #18

Figure 13. Supplied Power vs. Distance of the Weighted and Unweighted cart runs.......pg. #20

Figure 14. Supplied power vs. time for the unweighted cart run with energy phase breakdown
…...pg. #21

Figure 15. Supplied Power vs. Time for the Weighted cart run with phase breakdown....pg. #21

Figure 16. System Analysis 1 Schedule …..pg. #27

Figure 17. System Analysis 2 Schedule …...pg. #27-28

Figure 18. Performance Test 1 Schedule …..pg. #28

Figure 19. Daily Schedule for Performance tests 1, 2, 3, and 4 …....................................pg. #29

List of Tables

Table 1. Energy per kilogram of unweighted cart …..pg. #5

Table 2. Concept screening for designs A, B, & C …...pg. #10

Table 3. Concept scoring for designs A, B, & C …..pg. #10

Table 4. Supplied Energy for each line of code for design 1 …....................................pg. #17

Table 5. Supplied Energy for each line of code for design 2 …...pg. #17

Table 6. Energy per kilogram for each design …...pg. #18

Table 7. energy phase breakdown with code for the AEV during the unweighted cart run
..pg. #22

Table 8. energy phase breakdown with code for the AEV with the weighted cart final test
….. pg. #23-24

Table 9. Price Breakdown for AEV Design 1 …...pg. #26

Table 10. Price Breakdown for AEV Design 2 …...pg. #27

Executive Summary:

The purpose of this project is to learn about energy management, operational efficiency, and

operational consistency while applying coding skills. To learn about these aspects, a situation

was presented that required a small Advanced Energy Vehicle (AEV) to be created that would

automatically hook up to a cart that can be transported to different stations along the track. The

goal was to create one of these AEVs to be the most efficient and consistent vehicle possible.

The AEV will use absolute position tracking to acutely position itself in the required spots while

being the most efficient as possible. In this certain situation, an energy efficient AEV is required

because the park this would be built for is secluded and does not have much access to

electricity. Because the vehicle has limited access to electricity, it must use as little energy as

possible hence why it must be as efficient as possible. To produce a design for an energy

efficient AEV, 2 different AEVs were built and tested, while various aspects were then inspected

to determine which one was more efficient. The first AEV design, design 1, was based partly

from the original model given at the beginning of the lab. Design 1 was built and modified to use

the 3-bladed propellers and as well was made for components to be attached on the bottom.

Design 1 was then tested, and the data was taken from the EEPROM and converted into useful

data using a MATLAB script (see appendix), Design 1 was then taken apart and Design 2 was

constructed. Design 2 took the same energy efficient approach as Design 1 making sure to use

the 3-bladed propellers as well as a bottom mounted Arduino. However, Design 2 was made for

its stability as well as looks using the X-Wing from Star Wars. Design 2 program was then run,

and the data was taken from the EEPROM and converted once again into useful information

using the MATLAB script. The datasets from the 2 designs were then compared by looking at

the energy per kilogram (EPK) for each design. Design 1 used 257.7 J/Kg and design 2 used

326.2 J/Kg. With Design 1 using nearly 69 joules of energy per kilogram less than design 2 it

was chosen to continue in the design process. Design 1 then completed two tests in which the

AEV would traverse the entire length of the track (Full-track run), including the stop on the

incline. One test would be with the weighted cart and one would be with the unweighted cart.

The mass used to calculate the EPK would be the mass of the AEV as the goal is to measure

the efficiency of the AEV itself. With the weighted cart the AEV used 1,346.28 J/Kg of energy

and with the unweighted cart the AEV used 1408.03 J/kg of energy (Table 1).

Introduction:

The AEV project was created to develop an energy efficient and autonomous vehicle to

transport people and cargo along a monorail inside a national park. The vehicle must conserve

as much energy as possible since the power at the park is limited and stranding the tourists or

cargo is not an option. The project is important because creating a model AEV allows for rapid

prototyping and configurations that if otherwise started on a large scale would take months or

even years to complete, however using small scale AEVs, major changes can be completed in

days and smaller changes can be completed in hours. The AEV will focus on energy

management, operation efficiency, and operational consistency. The AEV will go slow enough

to allow for the passengers and cargo to have a comfortable ride ensuring that passengers do

not fall off the cart. The AEV will have energy per kilogram optimized to prevent energy waste.

AEV Initial Concepts:

In Performance Test 1 two designs were compared to see which was better suited to the task

explained above. Design 1 was inspired by the sample AEV given at the beginning of the lab,

from there it was adapted for the highest energy efficiency and the lowest mass, as well

improving the aerodynamic drag experienced by the model through the addition of a battery

carrier which was 3-d printed. Design 2 attempted to further these improvements made through,

attempting to further decrease drag by decreasing the width of the airframe used. This also

attempted to lower the mass used and decrease the energy used per kilogram. Design 2 was

made for its striking resemblance to the x-wing from Star Wars. Additionally, it would be more

stable. The designs originally created in lab 1 were all abandoned besides Design Model B

(Figure 1), this was because Design Model B incorporated the best features known at that time.

However, since then experiments have improved the knowledge and better choices have been

made. For instance, the choice to put the Arduino on the bottom to allow for an optimal center of

gravity location. Or the incorporation of an aerodynamic battery carrier which decreases drag

and optimizes C.G location. All changes were based off experience gained in experiments. The

prototypes allowed for the AEV to have the best starting configuration possible that would then

be edited to a more efficient model. For instance, the aerodynamic shield in Design Model B

allowed for the thought of the aerodynamic shield on the battery carrier. Which will also be used

to hold the servo that will hook onto the cart (shown at the start of the AEV in figures 2 and 3.

(Figure #1): Orthographic projection of design model B (Nick Stassen’s design)

Results and Discussion:

(Figure #2): AEV Design 1 Solidworks model

(Figure #3): AEV Design 2 Solidworks model

Performance Test 1 generated valuable information in determining the most energy efficient

AEV (Advanced Energy Vehicle) design. Both designs in figures #2 and #3 above were similar

in many aspects: monorail hangar attachment placement, hangar attachment used, Arduino

assembly controller placement, and others. The differences between the vehicles were the

number of wings, the central plastic base used for holding all the components, the motor

placement, and the battery placement. This 3-D printed part on both vehicles seen above as the

pale gray object on the nose of the vehicles was created to holster the battery on the front of the

vehicle while allowing better aerodynamics. The servo which connected the AEV to the cart was

also fitted on the 3-D printed part. Three designs were originally created by the group in

experiment 3 (with the addition of a sample design for a total of 4) which encouraged creative

thinking regarding combinations of parts for energy efficiency. These combinations in

experiment 3 influenced the structures of designs 1 and 2 in several ways- most notably the

need for a 3-D printed part (See figures #4, #1, and #5 for design concepts in experiment 3).

(Figure #4): Orthographic projection of design model A (Ben Bazan’s design)

(Figure #5): Orthographic projection of design model C (Matthew Geiger’s design)

(Table #2): Concept screening for designs A, B, & C

(Table #3): Concept scoring for designs A, B, & C

Design 1 was selected by judging other designs based off a design concept screening and

scoring sheet (refer to tables #2 and #3 for concept screening and scoring sheets respectively).

A design was created by each team member with the addition of the sample design (from

experiment 1) for a total of 4 (refer to figures #4, #1, and #5 for orthographic projections of the 3

original designs). These designs were then judged on characteristics that were vital to the

success of the AEV: balance, center-of-gravity location, durability, cost, environmental impact,

look, etc. Design B from the concept screening and scoring was chosen to continue onto

Performance Test 1 under the new name of “Design 1”. Design 2 in Performance test 1 was

made to incorporate the fundamental qualities of design 1 based off the concept screening and

scoring sheet, such as low energy usage and center of gravity location however it would also

add stability and looks to the AEV. The goal with Design 2 was to create a better looking AEV

more stable, as well as improving the aerodynamic characteristics of the design by decreasing

the width of the base section.

Ultimately, the double wing structure of Design 2 (figure #3) led to an increase in weight as well

as a decrease in the thrust experienced by the AEV because of an increase in drag between the

propeller slipstream and wing structure, making Design 2 less efficient. While the graphs and

data alone support this energy inefficiency hypothesis, Design 2 was unable to traverse the

incline portions of the track with the code that Design 1 ran on. This comparison allowed a

simple conclusion to be made about the energy usage of Design 2. However, subsequent tests

were done to ensure this, the half-track run code used was then modified to allow Design 2 to

complete the half-track run. Modifications consisted of increasing motor power percentages and

changing the absolute position values where the AEV needed to stop. Design 1 consumed a

total of 69.323J of energy completing the half-track run (Table #4), while Design 2 consumed a

total of 114.18J on the same run (Table #4). This was a significant difference which the team did

not expect. The team made Designs 1 and 2 to be similar, however Design 2 performed poorly

in comparison. This information contributed to the decision to continue with Design 1.

Performance Test 1 was important to the design process because it demonstrated the need for

a light vehicle. Future changes made to the AEV would need to help make the vehicle lighter or

stay the same weight and improve aerodynamic characteristics. Design 2 was less aerodynamic

than design 1 for one reason, the double winged structure increased the drag between the

wings and the propeller slipstream, which caused the AEV to benefit from less force than the

motors were producing. Furthermore, one of design 2’s motors were offset a couple degrees.

While it was mostly unnoticeable to the naked eye, this error likely impacted the motors

contribution to the overall thrust of the vehicle. However, this offset motor was an innate part of

the vehicle based on the parts available, meaning it could not be fixed without an improvement

in available building parts or manufacturing new building parts. This process would likely be a

waste of time and possibly add more weight to the vehicle. The System Analysis tests 1 and 2

gave the team direction with how to code the designs for Performance Test 1. This experiment

involved testing different coding functions which have the same outcome but different ways of

getting there. Most notably, these tests compared using the celerate command and the

motorSpeed command. Figures #6 and #7 show the celerate and motorSpeed performances

during their respective flat track runs. The motorSpeed command uses less total energy in this

run and as well takes less time. Additionally, a fatal error could occur when using the celerate

command, if the cellerate command were to be active (meaning the code is still increasing the

power of the motors) and the AEV were to go past a position that was used in the next line of

code to stop the AEV (in Arduino it would look like this: celerate(10,40,4,4);

goToAbsolutePosition(10*(8/3.901))), then the AEV would never stop and the safety of

passengers would be at risk. This information showed the team that the motorSpeed command

should be used primarily rather than celerate, however small time values for celerate could be

used to reduce strain on motors. The half-track code was created using this style. The full track

coded design and final vehicle design were heavily influenced by performance tests.

(Figure #6): describes the AEV flat track run, supplied power versus time, using celerate

commands, along with a phase breakdown.

(Figure #7): describes the AEV flat track run, with supplied power versus time, using

motorSpeed commands. Along with a phase break down.

(Figure #8). System Efficiency vs. Advance Ratio

Experiment 4 tested three different propellor types each in 2 different configurations. These two

configurations were pusher and puller (tractor). As seen above in figure #8, EF-3 bladed puller

configuration has the best propulsion efficiency for most of the advance ratio. In addition, the

EF-3 blade pusher configuration comes second place until around 0.5 advance ratio. This

showed that the EF-3 bladed propellors will give the highest efficiency at lower advance ratios

(approximately 0.7 and below), but in both configurations. These advance ratios tend to occur at

motor power percentages around 30-40%. The code used in all AEV runs have motor power

percentages primarily around 10-40% meaning EF-3 was the most suitable pick for the

propellors.

(Figure #9): Supplied Power vs. Time (with phase breakdowns) for Design 1 Half-track run

Figure #9 shows the supplied power to the motors vs. time on the half-track run for design 1.

The different phases of the run are indicated by colored dashed boxes. The highest energy

phase was observed at the start of the run in phase 1. High energy was observed due to the

AEV needing to get up an incline in pusher configuration- the less optimal configuration. Phase

2 represents the vehicle traveling on the horizontal after the incline and getting over to the

pickup station at a low speed. Phase 3 is where the vehicle stopped at the station for 4 seconds

and then reversed. When the vehicle is braked, energy levels are approaching zero. Phase 4 is

where the vehicle accelerated along the horizontal before going down the now decline. Phase 5

shown in magenta is where the vehicle reduced its power not only because it was going down a

decline and thus had more speed but also because it was going around a turn near the end of

the phase. Phase 6 in orange shows the power after the vehicle made it around the turn and

needed more power. In Phase 7 power was cut to come to a stop at “the waves”, this lasted 4

seconds. In Phase 7 shown in a cyan dashed box is where the vehicle increase power to make

it up the incline, note how its is significantly less power because it is in puller configuration. In

Phase 8 the vehicle uses a small amount of power to traverse the horizontal for another 3 feet.

(Figure #10): Supplied Power vs. Time (with phase breakdowns) for Design 2 Half-track run

Figure #10 shows the supplied power to the motors vs time with the different phases being

indicated by dashed boxes (same as figure #9). As seen above, design 2 reached a maximum

of 18 Watts of supplied power whereas in Figure #9 design 1 reached a maximum of only 15

Watts (both maximums being in phase 1). This trend of design 2 using more power was

consistent throughout the entire comparison of the two runs. Like design 1, phase 1 was the

highest energy phase because it involved the AEV going from stopped to ascending an incline.

This required a significant amount of power and design 2 was both heavier and less

aerodynamic. There two reasons most likely account for the increase in supplied power in

design 2 compared to design 1. Phase 2 shows the AEV using a lower motor speed to glide to

the pickup station. Phase 3 is the AEV breaking at the pickup station. Phase 4 is the largest

difference between Figures #9 and #10 because it combined phases 4 and 5 from Figure #9

into one phase. This change happened because design 2 couldn’t make the half-track run on

the lower power of phase 5 from design 1’s code. This meant the power needed to be increased

during that time interval of the run for design 2. Ultimately the team just continued the phase 4

from design 1’s code into phase 5 of design 2’s code, and this worked. Phase 5 shows the

deceleration around the bend on the half-track run. Phase 6 is where design 2 needed a little

more power after going through the bend. Phase 7 is the AEV stopping at the waves location

along the half-track run. Then for phase 8, the second most energy-intensive phase, the vehicle

went up the second incline in puller configuration. Phase 9 shows the vehicle being at the top of

the incline and inching toward the stop. Phase 10 shows the vehicle stopping.

(Figure #11): Supplied Power vs. Distance (both designs plotted together)

As mentioned above, design 2 clearly used more energy than design 1. Figure #11 above

shows the supplied power to the motors in designs 1 and 2 vs the distance they traveled. Figure

#11 agrees with the observation that design 2 used more energy. Interestingly, they show the

same levels of supplied power in some places. However, This happened because they are

coasting at those points. Around the 2-8 meters mark, the graphs looks somewhat the same

because the designs are both coming down from the first incline and already have potential

energy just from the height. This means less energy was needed to travel further and they

cruised up until they stopped around 8-9 meters.

Phase Arduino Code Energy per Phase (J)

1 motorSpeed(4,45) 37.86

2 motorSpeed(4,14) 3.0633

3 brake(4) goFor(4) 0.949

4 motorSpeed(4,22) 22.47

5 motorSpeed(4,16) 13.92

6 celerate(4,15,12,1) motor Speed(4,22) 3.64

7 brake(4) goFor(4) 0.492

8 motorSpeed(4,30) 23.115

9 motorSpeed(4,16) 30.894

 Total energy per kilogram 507.07

(Table #4): Supplied Energy for each line of code for design 1

Figure #9 visualized the supplied power vs time with phase breakdowns graphically for design

1. Table #4 above shows the same concept in the form of total joules per phase and the code

executed at the phase. As mentioned before, phase 1 required the most energy for designs 1

and 2. This is because the motors need to be ran at higher powers to get the designs from

stopped to moving up an incline. As seen above in Table #4, the AEV starts off with the

motorSpeed function to start the motors. The First parameter represents both motors being

activated and the second represents the power percentage the motors are to be ran at. 45% is

the highest motor power percentage the team used for design 1. The energies per phase where

the AEV was braked equaled around 0 which was expected. The AEV motors were only ran at

30% for the second incline because it was in puller configuration which is the optimal

configuration to be in.

Phase Arduino Code Energy per phase (J)

1 motorSpeed(4,50) 34.303

2 motorSpeed(4,20) 4.6043

3 brake(4) goFor(4) 0.022

4 motorSpeed(4,22) 39.727

5 motorSpeed(4,16) 5.8493

6 celerate(4,15,12,1) 2.435

7 motorSpeed(4,22) 2.281

8 brake(4) goFor(4) 24.14

9 motorSpeed(4,35) 3.4416

10 brake(4) 0.09102

326.232
Total energy per
kilogram

(Table #5): Supplied Energy for each line of code for design 2.

Figure #10 visualized the supplied power vs time with phase breakdown graphically for design

2. Table #5 above shows the same concept in the form of total joules per phase and the code

executed at the phase. Table #4 and #5 show practically the same code. However, design 1 in

Table #4 tends to use less joules per phase than design 2 with a few exceptions. In addition, the

code in Table #5 for design 2 generally has larger power percentages for the motors. This is

due to design 2 being less aerodynamic and heavier (thus needing more power to move).

Design Energy (J) Weight (kg) Energy per kilogram (J/kg)

1 69.323 0.269 257.7

2 114.18 0.35 326.2

(Table #6): Energy per kilogram for each design

Table #6 shows the total energy of both designs on the half-track run, the weight of each

design, and the energy per kilogram of each design. As seen above, design 1 uses roughly 45

less total joules than design 2 making it a clear winner in terms of total energy cost. As

mentioned earlier in the discussion, design 2 weighed more which likely contributed to the high

energy consumption. Also, the energy per kilogram of design 1 is a clear winner as seen above

with its energy per kilogram being 257.7 J/kg compared to design 2’s 326.2 J/kg.

(Figure #12) details the solidworks model of the hook used by the AEV.

In order to connect to the cart a hook was designed using solidworks (see figure ##). The hook

was made to essentially snap into the arm of the servo a screw was used to secure the arm into

the gear of the servo. The hook was designed to have a small width so it could enter the loop

attached to the cart with no problem and also have a medium radius so that the AEV didn’t need

to be too close to the cart where other parts of the AEV could interfere with the cart/hook. The

medium radius also allowed the AEV-cart configuration to pass around bends without the hook

pulling the cart off of the track. Another advantage of the medium radius of the hook was the

allocation of changes in height, when changing from the flat portion of track to an incline portion

the AEV would be at an angle compared to the cart, while this only occurred for a short amount

of time (until the cart reached the incline portion of the track) it was essential that the hook

would still be able to pull the cart at these angles. The only problem the AEV experienced when

connecting to the cart was the speed at which the servo was moving the hook to connect to the

cart. The servo would write itself to zero to quickly and if the cart was in the wrong position the

hook would hit the loop of the cart and fall off the track. To change this a servo write function

was created. Although simple it proved to be an extreme benefactor when connecting to the

cart. The function would initialize the integer i at a starting value when connecting to the cart the

value would be 70 degrees. Using a for loop the integer would decrement every 20ms using i—

until i was equal to 0. This meant the servo would take around 1.4 seconds to go from its initial

position to its 0 position, allowing the team ample time to move the cart if in the wrong position.

The only problem experienced during the full track run was with the weighted cart, one of the

“dogs” ears’ would smack into a bracket holding the track on the bend. To get around this issue

the power of the AEV was shortly increased and then would be turned off, this allowed for a

separation distance between the cart and the hook which allowed the cart to pass without the

ear of the dog smacking into a bracket. Although this does slightly increase the power

consumption for the AEV around the bend it is necessary to complete the track.

The main change for the energy optimization that was performed was the inclusion of the incher

function. This incher function that was included in the unweighted cart run proved to be an

integral part of the code in the weighted cart run. With the mass of the cart being higher other

coding strategies needed to adjust motor speeds and braking distances in order to account for

this change in momentum. However using the incher function the braking distance values

changed only slightly. This is because the incher function operates at what is essentially the

bare minimum to move forward, so when a braking distance is reached the AEV stops almost

immediately.

Although no changes occurred to the physical structure of the AEV several changes were made

to the code of the AEV. The main change required was coming from the grand canyon down

toward the waves, a test proved that if the AEV-cart configuration came into the bend at too

great of a speed the ear of one of the dogs would smack into the bracket holding the track and

the AEV and cart derailed. This led to the motor power being cut near the beginning of the inline

so the AEV-cart configuration would coast toward the beginning of the bend, from there motor

speed was written to a value that would prevent the AEV-cart configuration from going too fast

and derailing. The other main change also dealt with the dog ear-bracket collision problem.

When coming from the rocky mountains towards hocking hills the ear of the dog would collide

with the bracket, it had to deal with the angle at which the AEV was pushing the cart. In order to

avoid this the AEV would increase the power to the motors at the beginning of the bend and

then cut the power to the motors approximately 4 inches before the collision area. This allowed

for the AEV to gain speed before the collision area in which it would then coast through the

collision area. This led to the loop of the cart and the hook of the AEV (the contact points of both

vehicles) to gain some separation.

(Figure #13): Details the Supplied Power vs. Distance of the Weighted and Unweighted cart

runs.

In the above figure the weighted cart run is shown to have a higher maximum usage of energy.

This spike to upwards of 20 watts occurs when the AEV reverses its motors to stop on the

incline portion near Alaska. This is because the weighted cart has a higher force of gravity in the

x direction that requires a higher motor speed and thus a higher power percentage to offset.

(Figure #14): details the Supplied power vs. time for the unweighted cart run with energy phase

breakdown.

(Figure #15): Describes the Supplied Power vs. Time for the Weighted cart run with phase

breakdown.

When comparing Figures 14 and 15 there are a couple of important distinctions to be made. In

figure 15 the fourth phase shows little to no power being supplied to the motors. This is because

during this time the vehicle is coasting down the incline portion and headed towards the bend.

Whereas the unweighted cart was currently supplying power to the motors. This was one of the

main reasons for the energy per kilogram decreasing between the two runs. Another difference

between the runs is in the violet box, or the 15th box from the left of figure 15. This momentary

spike in power correlated to when the AEV was going around the bend. As mentioned above

this increase in power was necessary for the AEV-cart configuration to make it around the bend

and not get stuck from the ear of the dog hitting the bracket that supports the track. Similarities

between the two runs include the main burst of power at the beginning of the run to make it up

to the grand canyon to pick up the cart, as well as the braking maneuver done by the AEV when

going down the incline towards the maintenance station.

Phase Code Time Energy (J)

1 motorSpeed(4,40); 3.232 47.164

2 incher function 1.657 10.397

3 brake(4); rotateServo(0); 9.944 0.22

4 motorSpeed(4,24); goToAbsolutePosition(48); 4.47 25.98

5 motorSpeed(4,15); goToAbsolutePosition(-168); 2.65 8.637

6 motorSpeed(4,20); goToAbsolutePosition(-280); 1.988 7.577

7 brake(4); goFor(5); 4.8066 2.004

8 motorSpeed(4,40); goToAbsolutePosition(-588); 2.155 24.7636

9 incher function to -510 0.829 4.69

10 brake(4); goFor(7); 6.7955 0.065

11 motorSpeed(4,30); goToAbsolutePosition(-512); 4.8066 41

12 reverse(4); motorSpeed(4,36); 4.641 43.677

13 brake(4); reverse(4); motorSpeed(4,24); 1.49 10.452

14 goToAbsolutePosition(-420); brake(4); goFor(5); 5.304 2.93

15 motorSpeed(4,37); goToAbsolutePosition(-100); 5.14 56.65

16 incher Function to twelve 4.972 2.348

17 motorSpeed(4,43); goToAbsolutePosition(130); 6.961 80.31

18 brake(4); goFor(5); rotateServo(60); 4.807 0

19 motorSpeed(4,20); goToAbsolutePosition(120); 1.988 7.067

20 incher function but modified to brake on descent 2.9834 13.13

21 same incher function 3.149 5.64

Total Energy per kilogram 1,408.00

(Table #7): describing the energy phase breakdown with code for the AEV during the

unweighted cart run.

Phase Code Time Energy (J)

1
rotateServo(60); motorSpeed(4,40);
goToAbsolutePosition(54*(8/3.902)); 2.855 34.61

2 brake(4); goFor(5); rotateServo(0); goFor(4); 10.13 1.273

3
reverse(4); motorSpeed(4,26);
goToAbsolutePosition(48*(8/3.902)); 4.24 27.875

4 brake(4); goFor(8); 8.1 1.54

5 motorSpeed(4,29); goToAbsolutePosition(-142*(8/3.902)); 4.788 35.11

6 brake(4); goFor(5); 4.788 0.51

7
motorSpeed(4,44); goToAbsolutePosition(-256*(8/3.902));
inching function 3.5 39.422

8 brake(4); goFor(4); 3.87 0.008

9

reverse(4); motorSpeed(4,33); goToAbsolutePosition(-
268*(8/3.902)); motorSpeed(4,30); goToAbsolutePosition(-
258*(8/3.902)); 4.42 43.511

10 motorSpeed(4,52); goFor(1); 0.55 8.708

11 motorSpeed(4,36); goFor(3); 3.315 32.511

12
brake(4); reverse(4); motorSpeed(4,26);
goToAbsolutePosition(-202*(8/3.902)); 1.66 12.453

13 brake(4); goFor(5); 4.97 0.682

14 motorSpeed(4,35); goToAbsolutePosition(-120*(8/3.902)); 3.13 32.28

15 motorSpeed(4,44); goToAbsolutePosition(-96*(8/3.902)); 0.55 7.8

16 brake(4); delay(750); motorSpeed(4,65); delay(350); 1.29 15.84

17 motorSpeed(4,33); goToAbsolutePosition(-40*(8/3.902)); 3.13 28.44

18
brake(4); inching function(-12*(8/3.902)); brake(4);
goFor(5); 5.16 2.52

19 motorSpeed(4,44); goToAbsolutePosition(66*(8/3.902)); 5.16 74.39

20 inchingFunction(79*(8/3.902)); 1.105 7.71
21 brake(4); goFor(5); rotateServo(70); goFor(1); 7.73 1.59

22
reverse(4); motorSpeed(4,22);
goToAbsolutePosition(55*(8/3.902)); 3.315 21.388

23
modification to incher code allowing us to slow down on
incline 4.6 4.99

total

total energy per
kilogram 1346.28

(Table #8): describing the energy phase breakdown with code for the AEV with the weighted

cart final test.

In tables 7 and 8 it shown that the total energy per kilogram decreased between the unweighted

cart run and the weighted cart run. This is due to a couple of factors the main reasons being that

as stated above the weighted cart configuration (WCC) coasted down the incline from the grand

canyon towards the bend whereas the unweighted cart configuration (UWCC) used power

during that time. Another reason for the decrease in energy usage could be the change in

batteries. The unweighted cart run used the battery that the AEV had been using for all previous

tests. However, one of the wires came out of the terminal used to charge the battery, while at

first it was thought this could be overcame either by holding the wire into the terminal by hand or

by soldering new wires to another terminal it could not and the battery died. A new battery was

then used which could account for the drop in energy usage as it might be more efficient at

delivering power.

The main area in which energy could be saved would be when going around the bend coming

from the rocky mountains toward the hocking hills stop. Although the increase in power to

increase separation between the hook of the AEV and the loop of the cart was necessary there

is a way in which it would no longer be necessary. If the weighted cart’s cargo could configured

to better match the specifications of the track that it goes along this maneuver would no longer

be necessary and it would save a lot of energy. To do this either the housing of the cargo could

be changed to have more length and less height, this would allow for the same volume of cargo

to be transported yet get rid of the need for the maneuver. The other way in which this could be

accomplished would be in increasing the length of the arm that connects the cart platform to the

track. In order for the loop to remain at a constant height relative to the AEV the loop would

need to be elevated using a 3-d printed part that would assist in the aerodynamics of the cart.

An additional way in which energy could be conserved would be by a change to the track of the

monorail, the distance between the incline portion of the track leading to the grand canyon

station and the maitenance station location would allow the AEV to experience more frictional

forces before it came to the maitenance station. This would decrease the amount of energy the

motors use in braking to slow the AEV down. While the energy to get to the grand canyon

station would increase coming from the maitenance station, a position could be found in which

the energy saved would be the greatest when taking the difference between the energy saved

from the braking maneuver and the energy lost using more power to traverse more distance

between the grand canyon station and the maitenance station.

The main issue experienced during the weighted cart run was with the inching function. While

the approximate power percentage was being discovered to make it up the incline toward the

grand canyon station and not be left with too much power, occasionally the AEV would get stuck

at the top of the incline. The AEV would then be freed however the inching function was

increasing motor speed while it was stuck, however the motor speed did not change until later.

This resulted in the AEV being freed and continuing normally until all of a sudden the motor

speed would be increased to about 70 percent. The AEV would then blast forward and run into

the cart causing the cart, the AEV or both to derail and cause damages to both themselves and

their surroundings. An if statement was implemented in an attempt to prevent this from

happening however it was discovered that the if statement was detecting a motor speed greater

than what it was supposed to even though the motor speed was not at that value. This resulted

in the inching function being broke out of and not moving the AEV into place. Eventually the

incher function at the grand canyon station was discarded due to these repeated issues.

However other incher functions such as the one at Alaska and the incher function used when

dropping the cart off at the grand canyon station were implemented in the code.

Overall the stop on the incline near Alaska was relatively easy to implement. The main problem

that existed was moving the WCC from the Alaska stop towards the incline. If the motor speed

and subsequently the speed of the WCC was too great then the WCC would surpass the stop

on the incline and go all the way to the bottom of the incline where it would then begin to climb

the incline. Obviously this wasted energy and was not desired, to account for this 2 major

changes were made. First the motor speed that the WCC used to begin with at the Alaska stop

was decreased halfway toward the beginning of the incline. This allowed for the WCC to gain

some speed and then remain at a lower speed. Secondly the motor speed was briefly increased

to a large value to slow the vehicle from its current direction (toward the bottom of the incline)

and then after a second the motor speed was decreased to maintain a zero velocity value.

Conclusion and Recommendations:

Through the development of the Advanced Energy Vehicle (AEV) concepts over C++

programming, operational consistency, and operational efficiency were taught. Using concept

screening and scoring sheets the less optimal AEV designs were weeded out. This left us with a

design that excelled in multiple aspects including affordability, aerodynamics, and weight. This

design went on to be known as design 1. When design 1 was compared to design 2 in terms of

energy usage, it was more efficient. This led to the decision of design 1 being utilized for the

final run. The coding style knowledge obtained from these tests was carried on throughout the

rest of the AEV experiments in many ways: motorSpeed was used more than celerate, avoiding

reversing and powering motors to break, and slowing down the servo. These coding styles can

especially be seen in the final code. Overall, the efficiency of the AEV when compared to other

teams was in the top 3 out of approximately 13. This was a huge success considering how

important being energy efficient was for the mission.

The total energy usage per kilogram of the WCC was 1346 J/kg (Table #9), however there is no

real reference for that amount of energy. So, by converting the total joules to its kilocalorie

equivalent it is easier to gain a grasp on that amount of energy- which comes out to be 0.322

kilocalories (kcal) of energy. Since the average person burns between 0.3-0.6 kcal when doing

a singular push up, the amount of energy consumed by the AEV is not that much. Especially

when considering that an average human consumes around 2,250 kcal a day. This low

consumption of energy is very surprising, which just goes to show how inefficient humans are at

converting energy.

The main error incurred during the AEV’s development was with the inching function. The

function created was a while loop which iterated a difference in position over a time and

increased or decreased the motor speed accordingly 5 to 10 times a second. The inching

function operated under the assumption that all marks that the AEV travelled were accounted

for. However, as is evident from the run this is not the case. In Table #9 it is shown in phases 1

and 19 that the goToAbsolutePosition function used to make it up the incline changes from

phase 1 to 19. In phase 1 the goToAbsolutePosition function uses a value of 54 inches

multiplied by the constant to convert into marks, however in phase 19 that value changes to 66

inches multiplied by the constant to convert into marks. This means that a total of around 12

inches were lost during the run from the wheel skidding and not measuring distance. Skidding

for the incher function is extremely dangerous as lost marks result in drastic motor speed

changes. Resulting from these high changes in motor speed was almost always the derailing of

the AEV and physical damage to components such as the servo and battery carrier. These

setbacks delayed progress due to the AEV being inoperative, and delayed progress meant

having to rush other tasks.

Some recommendations to avoid these consequences would be to ensure a way to prevent the

motor speed from being written to high values. Manufacturing better wheels that gripped to the

track and did not slip or skid would ensure less marks lost during the run. An additional

improvement would be adding more reflective tape patches, this would allow the reflectance

sensors to measure more marks per second and improve the sampling time of the inching

function.

Appendix:

Part
of
parts Price per part Total cost per part

Arduino 1 100 100

Electric motor 2 9.99 19.98

Servo motor 1 5.95 5.95

Count sensor 2 2 4

Propeller 2 0.45 0.9

Wheels 2 7.5 15

2.5" x 7.5" Rectangle 1 2 2

Trapizoids 2 1 2

T-Shape Arm 1 3 3

Angle Brackets 6 0.84 5.04

Motor clamps 2 0.59 1.18

Bulk screws and nuts 1 2.88 2.88

Battery Carrier 1 .84 .84

 Total

 162.77
(Table #9): Price Breakdown for AEV Design 1

Part # of parts Price per part Total cost per part

Arduino 1 100 100

Electric motor 2 9.99 19.98

Servo motor 1 5.95 5.95

Count sensor 2 2 4

Propeller 2 0.45 0.9

Wheels 2 7.5 15

T-Shape 1 2 2

Trapizoids 4 1 4

T-Shape Arm 1 3 3

Angle Brackets 10 0.84 8.4

Motor clamps 2 0.59 1.18

Bulk screws and nuts 1 2.88 2.88

Battery Carrier 1 .84 .84

 total

 168.13
(Table #10): Price Breakdown for AEV Design 2

No. Task Start Finish Due Date Ben Matthe

w

Nick %

 complete

1 AEV 1

Construction

2/2/2022 2/2/2022 2/2/2022 x x x 100

2 AEV 1 Wind

Tunnel

Testing

2/9/2022 2/9/2022 2/9/2022 x x x 100

3 Wind Tunnel

Data Analysis

2/9/2022 2/16/2022 2/16/202

2

x x x 100

4 Progress

Report

2/9/2022 2/16/2022 2/16/202

2

x x x 100

(Figure #16): System Analysis 1 Schedule

No. Task Start Finish Due Date Ben Matthe

w

Nick %

 complete

1 Code Flat

Track Run

2/16/202

2

2/23/202

2

3/8/2022 x x 100

2 Matlab Code

for Flat Track

Run

2/16/202

2

2/23/202

2

3/8/2022 x 100

3 Code Half

Track Run

2/23/202

2

3/2/2022 3/8/2022 x x 100

4 Matlab Code

for Half Track

Run

2/23/202

2

3/2/2022 3/8/2022 x 100

5 Progress

Report

2/16/202

2

3/8/2022 3/8/2022 x x x 100

(Figure #17): System Analysis 2 Schedule

No. Task Start Finish Due

Date

Ben Matthew Nick %

 complete

1 AEV 2

Construction

3/22/22 3/24/22 3/31/22 x x x 100

2 AEV 2 Testing 3/22/22 3/24/22 3/31/22

x x 100

3 PDR 2/16/22 3/31/22 3/31/22 x x x 100

3a Title page, Table

of contents, &

List of Figures

3/28/22 3/28/22 3/31/22 x x x 100

3b Executive

Summary

3/29/22 3/30/22 3/31/22 x 100

3c Introduction 3/28/22 3/28/22 3/31/22 x 100

3d AEV Initial

Concepts

3/28/22 3/29/22 3/31/22 x 100

3e Results and

Discussion

3/28/22 3/28/22 3/31/22 x 100

3f Conclusion and

Recomendation

3/29/22 3/30/22 3/31/22 x 100

3g Appendix 3/21/22 3/31/22 3/31/22 x 100

(Figure #18): Performance Test 1 Schedule

(Figure #19): Daily Schedule for Performances 1,2,3, and 4

Division of work statement

Ben Bazan completed Appendix and Executive Summary components. Matthew Geiger

completed the Introduction, AEV initial Concepts, Results and Discussion: Weighted and

Unweighted carts, and the Conclusion and Recommendations. Nick Stassen completed the

Results and Discussion.

Unweighted cart run Arduino Code:

rotateServo(60);
 reverse(4);
 motorSpeed(4,40);
 goToAbsolutePosition(55*(8/3.902));
 int i=10;
 motorSpeed(4,i);
 while(getVehiclePosition()<(77*(8/3.902))){
 float current = getVehiclePosition();
 delay(200);
 float next = getVehiclePosition();
 if(abs(next-current)/0.2<2){
 i++;
 motorSpeed(4,i);
 }
 if((abs(next-current)/0.2)>2){
 i--;
 motorSpeed(4,i);
 }
 }
 brake(4);
 goFor(5);
 for(int i=60; i>=0; i--)
 { // allows the servo to rotate slowly rather than quickly
 rotateServo(i);
 delay(20);
 }
 goFor(4); // waiting for humans to connect the cart to the AEV if self-connect fails.
 reverse(4);
 motorSpeed(4,24);
 goToAbsolutePosition(24*(8/3.902)); // traveling towards the now decline from the grandcanyon
 motorSpeed(4,15);
 goToAbsolutePosition(-84*(8/3.902));
 motorSpeed(4,20);
 goToAbsolutePosition(-140*(8/3.902)); // increasing speed to make it to the waves
 brake(4);
 goFor(5);
 motorSpeed(4,40); //increasing power to go up the incline towards alaska
 goToAbsolutePosition(-244*(8/3.902));
 i=12;
 motorSpeed(4,i);
 while(getVehiclePosition()>(-260*(8/3.902))){ //same incher code to make it to alaska
 float current = getVehiclePosition();
 delay(200);
 float next = getVehiclePosition();
 if(abs(next-current)/0.2<2){
 i++;
 motorSpeed(4,i);
 }
 if((abs(next-current)/0.2)>2){
 i--;
 motorSpeed(4,i);
 }
 }
 brake(4);

 goFor(7);
 reverse(4);
 motorSpeed(4,30);
 goToAbsolutePosition(-256*(8/3.902));
 brake(4);
 reverse(4);
 motorSpeed(4,36); //stopping on the incline portion by alaska
 goFor(5);
 brake(4);
 reverse(4);
 motorSpeed(4,24);
 goToAbsolutePosition(-210*(8/3.902)); //coasting into the next stop
 brake(4);
 goFor(5);
 motorSpeed(4,37);
 goToAbsolutePosition(-50*(8/3.902)); //going towards the hocking hills stop
 brake(4);
 i=10;
 motorSpeed(4,i);
 while(getVehiclePosition()>(6*(8/3.902))){ //using incher to stop at hocking hills
 float current = getVehiclePosition();
 delay(200);
 float next = getVehiclePosition();
 if(abs(next-current)/0.2<2){
 i++;
 motorSpeed(4,i);
 }
 if((abs(next-current)/0.2)>2){
 i--;
 motorSpeed(4,i);
 }
 }
 brake(4);
 goFor(5);
 motorSpeed(4,43); //powering up motors to make it up the incline towards the grand canyon
 goToAbsolutePosition(63*(8/3.902));
 i=10;
 motorSpeed(4,i);
 while(getVehiclePosition()<(74*(8/3.902))){ //same incher code
 float current = getVehiclePosition();
 delay(200);
 float next = getVehiclePosition();
 if(abs(next-current)/0.2<2){
 i++;
 motorSpeed(4,i);
 }
 if((abs(next-current)/0.2)>2){
 i--;
 motorSpeed(4,i);
 }
 }
 brake(4);
 goFor(5);
 for(int i2=0; i2<=70; i2++) { //same slow servo rotation code
 rotateServo(i2);
 delay(20);

 }

 reverse(4);
 motorSpeed(4,20);
 goToAbsolutePosition(60*(8/3.902));
 reverse(4);
 i=20;
 motorSpeed(4,i);
 while(getVehiclePosition()>(18*(8/3.902))){ //a modification to the incher code that allows it slow itself
down while traversing the incline portion of the incline
 float current = getVehiclePosition();
 delay(100);
 float next = getVehiclePosition();
 if(abs(next-current)/0.1>2){
 i++;
 motorSpeed(4,i);
 }
 if((abs(next-current)/0.1)<2){
 i--;
 motorSpeed(4,i);
 }
 }
 brake(4); //stopping the motors and stopping at the maitenance station.

Weighted cart run Arduino Code:

rotateServo(60);
 reverse(4);
 motorSpeed(4,40);
 goToAbsolutePosition(54*(8/3.902));
 brake(4);
 goFor(5);
 for(int i=70; i>=0; i--)
 { // allows the servo to rotate slowly rather than quickly
 rotateServo(i);
 delay(20);
 }
 goFor(4); // waiting for humans to connect the cart to the AEV if self-connect fails.
 reverse(4);
 motorSpeed(4,26);
 goToAbsolutePosition(48*(8/3.902)); // traveling towards the now decline from the grandcanyon
 brake(4);
 goFor(8);
 motorSpeed(4,29);
 goToAbsolutePosition(-142*(8/3.902)); // increasing speed to make it to the waves
 brake(4);
 goFor(5);
 motorSpeed(4,44); //increasing power to go up the incline towards alaska
 goToAbsolutePosition(-256*(8/3.902));
 int i=10;
 motorSpeed(4,i);
 while(abs(getVehiclePosition())<(267*(8/3.902))){ //same incher code to make it to alaska
 float current = getVehiclePosition();
 delay(200);
 float next = getVehiclePosition();

 if(abs(next-current)/0.2<2){
 i++;
 motorSpeed(4,i);
 }
 if((abs(next-current)/0.2)>2){
 i--;
 motorSpeed(4,i);
 }
 }
 brake(4);
 goFor(4);
 reverse(4);
 motorSpeed(4,33);
 goToAbsolutePosition(-268*(8/3.902));
 motorSpeed(4,30);
 goToAbsolutePosition(-258*(8/3.902));
 brake(4);
 reverse(4);
 motorSpeed(4,52); //stopping on the incline portion by alaska
 goFor(1);
 motorSpeed(4,36);
 goFor(3);
 brake(4);
 reverse(4);
 motorSpeed(4,26);
 goToAbsolutePosition(-202*(8/3.902)); //coasting into the next stop
 brake(4);
 goFor(5);
 motorSpeed(4,35);
 goToAbsolutePosition(-120*(8/3.902));
 motorSpeed(4,44);
 goToAbsolutePosition(-96*(8/3.902));
 brake(4);
 delay(750);
 motorSpeed(4,65);
 delay(350);
 motorSpeed(4,33);
 goToAbsolutePosition(-40*(8/3.902)); //going towards the hocking hills stop
 brake(4);
 i=10;
 motorSpeed(4,i);
 while(getVehiclePosition()>(-12*(8/3.902))){ //using incher to stop at hocking hills
 float current = getVehiclePosition();
 delay(200);
 float next = getVehiclePosition();
 if(abs(next-current)/0.2<2){
 i++;
 motorSpeed(4,i);
 }
 if((abs(next-current)/0.2)>2){
 i--;
 motorSpeed(4,i);
 }
 }
 brake(4);
 goFor(5);

 motorSpeed(4,44); //powering up motors to make it up the incline towards the grand canyon
 goToAbsolutePosition(66*(8/3.902));
 i=10;
 motorSpeed(4,i);
 while(getVehiclePosition()<(79*(8/3.902))){ //same incher code
 float current = getVehiclePosition();
 delay(200);
 float next = getVehiclePosition();
 if(abs(next-current)/0.2<2){
 i++;
 motorSpeed(4,i);
 }
 if((abs(next-current)/0.2)>2){
 i--;
 motorSpeed(4,i);
 }
 }
 brake(4);
 goFor(5);
 for(int i2=0; i2<=70; i2++) { //same slow servo rotation code
 rotateServo(i2);
 delay(20);
 }
 goFor(1);
 reverse(4);
 motorSpeed(4,22);
 goToAbsolutePosition(55*(8/3.902));
 reverse(4);
 i=25;
 motorSpeed(4,i);
 while(getVehiclePosition()>(6*(8/3.902))){ //a modification to the incher code that allows it slow itself
down while traversing the incline portion of the incline
 float current = getVehiclePosition();
 delay(100);
 float next = getVehiclePosition();
 if(abs(next-current)/0.1>2){
 i++;
 motorSpeed(4,i);
 }
 if((abs(next-current)/0.1)<2){
 i--;
 motorSpeed(4,i);
 }
 }
 brake(4);
 reverse(4);//stopping the motors and stopping at the maitenance station.
 i=10;
 motorSpeed(4,i);
 while(getVehiclePosition()>(5*(8/3.902))){ // trying to stop backwards
 float current = getVehiclePosition();
 delay(100);
 float next = getVehiclePosition();
 if(abs(next-current)/0.1>2){
 i--;
 motorSpeed(4,i);
 }

 if((abs(next-current)/0.1)<2){
 i++;
 motorSpeed(4,i);
 }
 }
 brake(4);

MATLAB Code:

%==

% Name: Matthew Geiger

% Date: April 20th 2022

% Class: 3:05 pm

%

% Last edited: 4/20/2022

%

%

%

% Program Title: Final Test Analysis

%

% Program Description: This program's purpose is to convert the

% EEPROMM data into usable values (inches velocity time(s)) as well as

% to determine the energy used.

%

%

%==

clear;

clc;

data=xlsread("Final_Test_m");

tA=data(:,1);

iA=data(:,2);

vA=data(:,3);

mCum=data(:,4);

mPos=data(:,5);

D=0.0762; %Diameter of propeller

m=input('Please enter the weight of the AEV in kilograms: ');

%With the data now in variablwes we can calculate the variables we

want

T=(tA./1000); %Time in seconds

I=(iA./1024*2.46*(1/0.185)); %current in amps

V=((vA./1024)*15); %voltage in volts

Pos=(0.0124.*mCum); %distance traveled in meters

RelPos=(0.0124.*mPos); %relative positon in meters

SupP=(I.*V); %power in watts

for i=1:(length(SupP)-1)

 IncE(i)=(((SupP(i)+SupP(i+1))/2)*(T(i+1)-T(i))); %Incremental

energy in joules

end

E=sum(IncE);% Total energy in joules

TotE=E/m; %Total energy in joules per kilogram

for i2=2:length(T)

 vel(i2)=((RelPos(i2)-RelPos(i2-1))/(T(i2)-T(i2-1)));

end

KE=(1/2*m.*(vel.^2)); %calculates instantaneous kenetic energy

PropRPM=((-64.59.*(I.^2)+1927.25.*I-84.58)*0.8); % equation for

finding rpm of propeller based off current

J=(vel./((PropRPM'/60)*D));

for i3=1:length(J)

 if J(i3)<=0.15 && SupP(i3)==0

 J(i3)=0;

 elseif J(i3)<=0.15 && SupP(i3)>0

 J(i3)=0.15;

 end

end

PropEff=abs(-454.37.*(J.^3)+321.58.*(J.^2)+22.603.*J);

aa=find(PropEff>100);

for ac=1:792

 while PropEff(ac)>100

 PropEff(ac)=(PropEff(ac)-100);

 end

end

plot(T,SupP);

grid on

xlabel("Time (seconds)");

ylabel("Supplied Power (Watts)");

title("Supplied Power (W) vs. Time (s)");

ab=ginput(23);

figure;

plot(Pos,SupP);

grid on

xlabel("Position (meters)");

ylabel("Supplied Power (Watts)");

title("Supplied Power (W) vs. Position (m)");

figure;

plot(Pos,vel); %plots the velocity vs position of the AEV

grid on

xlabel("Position (meters)");

ylabel("Velocity (m/s)");

title("Velocity (m/s) vs. Positon (m)");

figure;

plot(Pos,KE);

grid on

xlabel("Position (meters)");

ylabel("Kinetic Energy (Joules)");

title("Kinetic Energy (J) vs. Position (m)");

figure;

plot(J,PropEff,'v');

grid on

xlabel("Advance Ratio");

ylabel("Propulsion Efficiency (%) ");

title("Propulsion Efficiency (%) vs. Advance Ratio");

%Phase 1 energy

xR1=ab(1);

xL1=0;

Ep1t=(xR1-xL1);

iL1=knnsearch(T,xL1);

iR1=knnsearch(T,xR1);

Ep1=IncE(iL1:iR1);

Ep1tot=sum(Ep1);

Ep1to=Ep1tot/m;

%Phase 2 energy

xR2=ab(2);

xL2=xR1;

Ep2t=(xR2-xL2);

iL2=knnsearch(T,xL2);

iR2=knnsearch(T,xR2);

Ep2=IncE(iL2:iR2);

Ep2tot=sum(Ep2);

Ep2to=Ep2tot/m;

%Phase 3 energy

xR3=ab(3);

xL3=xR2;

Ep3t=(xR3-xL3);

iL3=knnsearch(T,xL3);

iR3=knnsearch(T,xR3);

Ep3=IncE(iL3:iR3);

Ep3tot=sum(Ep3);

Ep3to=Ep3tot/m;

%Phase 4 energy

xR4=ab(4);

xL4=xR3;

Ep4t=(xR4-xL4);

iL4=knnsearch(T,xL4);

iR4=knnsearch(T,xR4);

Ep4=IncE(iL4:iR4);

Ep4tot=sum(Ep4);

Ep4to=Ep4tot/m;

%Phase 5 energy

xR5=ab(5);

xL5=xR4;

Ep5t=(xR5-xL5);

iL5=knnsearch(T,xL5);

iR5=knnsearch(T,xR5);

Ep5=IncE(iL5:iR5);

Ep5tot=sum(Ep5);

Ep5to=Ep5tot/m;

%Phase 6 energy

xR6=ab(6);

xL6=xR5;

Ep6t=(xR6-xL6);

iL6=knnsearch(T,xL6);

iR6=knnsearch(T,xR6);

Ep6=IncE(iL6:iR6);

Ep6tot=sum(Ep6);

Ep6to=Ep6tot/m;

%Phase 7 energy

xR7=ab(7);

xL7=xR6;

Ep7t=(xR7-xL7);

iL7=knnsearch(T,xL7);

iR7=knnsearch(T,xR7);

Ep7=IncE(iL7:iR7);

Ep7tot=sum(Ep7);

Ep7to=Ep7tot/m;

%Phase 8 energy

xR8=ab(8);

xL8=xR7;

Ep8t=(xR8-xL8);

iL8=knnsearch(T,xL8);

iR8=knnsearch(T,xR8);

Ep8=IncE(iL8:iR8);

Ep8tot=sum(Ep8);

Ep8to=Ep8tot/m;

%Phase 9 energy

xR9=ab(9);

xL9=xR8;

Ep9t=(xR9-xL9);

iL9=knnsearch(T,xL9);

iR9=knnsearch(T,xR9);

Ep9=IncE(iL9:iR9);

Ep9tot=sum(Ep9);

Ep9to=Ep9tot/m;

%Phase 10 energy

xR10=ab(10);

xL10=xR9;

Ep10t=(xR10-xL10);

iL10=knnsearch(T,xL10);

iR10=knnsearch(T,xR10);

Ep10=IncE(iL10:iR10);

Ep10tot=sum(Ep10);

Ep10to=Ep10tot/m;

%Phase 11 energy

xR11=ab(11);

xL11=xR10;

Ep11t=(xR11-xL11);

iL11=knnsearch(T,xL11);

iR11=knnsearch(T,xR11);

Ep11=IncE(iL11:iR11);

Ep11tot=sum(Ep11);

Ep11to=Ep11tot/m;

%phase 12 energy

xR12=ab(12);

xL12=xR11;

Ep12t=(xR12-xL12);

iL12=knnsearch(T,xL12);

iR12=knnsearch(T,xR12);

Ep12=IncE(iL12:iR12);

Ep12tot=sum(Ep12);

Ep12to=Ep12tot/m;

%Phase 13 energy

xR13=ab(13);

xL13=xR12;

Ep13t=(xR13-xL13);

iL13=knnsearch(T,xL13);

iR13=knnsearch(T,xR13);

Ep13=IncE(iL13:iR13);

Ep13tot=sum(Ep13);

Ep13to=Ep13tot/m;

%Phase 14 energy

xR14=ab(14);

xL14=xR13;

Ep14t=(xR14-xL14);

iL14=knnsearch(T,xL14);

iR14=knnsearch(T,xR14);

Ep14=IncE(iL14:iR14);

Ep14tot=sum(Ep14);

Ep14to=Ep14tot/m;

%Phase 15 energy

xR15=ab(15);

xL15=xR14;

Ep15t=(xR15-xL15);

iL15=knnsearch(T,xL15);

iR15=knnsearch(T,xR15);

Ep15=IncE(iL15:iR15);

Ep15tot=sum(Ep15);

Ep15to=Ep15tot/m;

%Phase 16 energy

xR16=ab(16);

xL16=xR15;

Ep16t=(xR16-xL16);

iL16=knnsearch(T,xL16);

iR16=knnsearch(T,xR16);

Ep16=IncE(iL16:iR16);

Ep16tot=sum(Ep16);

Ep16to=Ep16tot/m;

%Phase 17 energy

xR17=ab(17);

xL17=xR16;

Ep17t=(xR17-xL17);

iL17=knnsearch(T,xL17);

iR17=knnsearch(T,xR17);

Ep17=IncE(iL17:iR17);

Ep17tot=sum(Ep17);

Ep17to=Ep17tot/m;

%Phase 18 energy

xR18=ab(18);

xL18=xR17;

Ep18t=(xR18-xL18);

iL18=knnsearch(T,xL18);

iR18=knnsearch(T,xR18);

Ep18=IncE(iL18:iR18);

Ep18tot=sum(Ep18);

Ep18to=Ep18tot/m;

%Phase 19 energy

xR19=ab(19);

xL19=xR18;

Ep19t=(xR19-xL19);

iL19=knnsearch(T,xL19);

iR19=knnsearch(T,xR19);

Ep19=IncE(iL19:iR19);

Ep19tot=sum(Ep19);

Ep19to=Ep19tot/m;

%Phase 20 energy

xR20=ab(20);

xL20=xR19;

Ep20t=(xR20-xL20);

iL20=knnsearch(T,xL20);

iR20=knnsearch(T,xR20);

Ep20=IncE(iL20:iR20);

Ep20tot=sum(Ep20);

Ep20to=Ep20tot/m;

%Phase 21 energy

xR21=ab(21);

xL21=xR20;

Ep21t=(xR21-xL21);

iL21=knnsearch(T,xL21);

iR21=knnsearch(T,xR21);

Ep21=IncE(iL21:iR21);

Ep21tot=sum(Ep21);

Ep21to=Ep21tot/m;

%Phase 22 energy

xR22=ab(22);

xL22=xR21;

Ep22t=(xR22-xL22);

iL22=knnsearch(T,xL22);

iR22=knnsearch(T,xR22);

Ep22=IncE(iL22:iR22);

Ep22tot=sum(Ep22);

Ep22to=Ep22tot/m;

%Phase 23 energy

xR23=ab(23);

xL23=xR22;

Ep23t=(xR23-xL23);

iL23=knnsearch(T,xL23);

iR23=knnsearch(T,xR23);

Ep23=IncE(iL23:iR23);

Ep23tot=sum(Ep23);

Ep23to=Ep23tot/m;

fprintf("Phase 1 energy total %f, time %f \n",Ep1tot, Ep1t);

fprintf("Phase 2 energy total %f, time %f \n",Ep2tot, Ep2t);

fprintf("Phase 3 energy total %f, time %f \n",Ep3tot, Ep3t);

fprintf("phase 4 energy total %f, time %f \n",Ep4tot, Ep4t);

fprintf("Phase 5 energy total %f, time %f \n",Ep5tot, Ep5t);

fprintf("Phase 6 energy total %f, time %f \n",Ep6tot, Ep6t);

fprintf("Phase 7 energy total %f, time %f \n",Ep7tot, Ep7t);

fprintf("Phase 8 energy total %f, time %f \n",Ep8tot, Ep8t);

fprintf("Phase 9 energy total %f, time %f \n",Ep9tot, Ep9t);

fprintf("Phase 10 energy total %f, time %f \n",Ep10tot, Ep10t);

fprintf("Phase 11 energy total %f, time %f \n",Ep11tot, Ep11t);

fprintf("Phase 12 energy total %f, time %f \n",Ep12tot, Ep12t);

fprintf("Phase 13 energy total %f, time %f \n",Ep13tot, Ep13t);

fprintf("Phase 14 energy total %f, time %f \n",Ep14tot, Ep14t);

fprintf("Phase 15 energy total %f, time %f \n",Ep15tot, Ep15t);

fprintf("Phase 16 energy total %f, time %f \n",Ep16tot, Ep16t);

fprintf("Phase 17 energy total %f, time %f \n",Ep17tot, Ep17t);

fprintf("Phase 18 energy total %f, time %f \n",Ep18tot, Ep18t);

fprintf("Phase 19 energy total %f, time %f \n",Ep19tot, Ep19t);

fprintf("Phase 20 energy total %f, time %f \n",Ep20tot, Ep20t);

fprintf("Phase 21 energy total %f, time %f \n",Ep21tot, Ep21t);

fprintf("Phase 22 energy total %f, time %f \n",Ep22tot, Ep22t);

fprintf("Phase 23 energy total %f, time %f \n",Ep23tot, Ep23t);

fprintf("total energy %f \n", E);

fprintf("total energy per kilogram: %f \n",TotE);

figure;

plot(T,Pos);

title("Position vs. time");

xlabel("Time (s)");

ylabel("Position (m)");

