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Executive Summary: 

The purpose of this project is to learn about energy management, operational efficiency, and 

operational consistency while applying coding skills. To learn about these aspects, a situation 

was presented that required a small Advanced Energy Vehicle (AEV) to be created that would 

automatically hook up to a cart that can be transported to different stations along the track. The 

goal was to create one of these AEVs to be the most efficient and consistent vehicle possible. 

The AEV will use absolute position tracking to acutely position itself in the required spots while 

being the most efficient as possible. In this certain situation, an energy efficient AEV is required 

because the park this would be built for is secluded and does not have much access to 

electricity. Because the vehicle has limited access to electricity, it must use as little energy as 

possible hence why it must be as efficient as possible. To produce a design for an energy 

efficient AEV, 2 different AEVs were built and tested, while various aspects were then inspected 

to determine which one was more efficient. The first AEV design, design 1, was based partly 

from the original model given at the beginning of the lab. Design 1 was built and modified to use 

the 3-bladed propellers and as well was made for components to be attached on the bottom. 

Design 1 was then tested, and the data was taken from the EEPROM and converted into useful 

data using a MATLAB script (see appendix), Design 1 was then taken apart and Design 2 was 

constructed. Design 2 took the same energy efficient approach as Design 1 making sure to use 

the 3-bladed propellers as well as a bottom mounted Arduino. However, Design 2 was made for 

its stability as well as looks using the X-Wing from Star Wars. Design 2 program was then run, 

and the data was taken from the EEPROM and converted once again into useful information 

using the MATLAB script. The datasets from the 2 designs were then compared by looking at 

the energy per kilogram (EPK) for each design. Design 1 used 257.7 J/Kg and design 2 used 

326.2 J/Kg. With Design 1 using nearly 69 joules of energy per kilogram less than design 2 it 

was chosen to continue in the design process. Design 1 then completed two tests in which the 

AEV would traverse the entire length of the track (Full-track run), including the stop on the 

incline. One test would be with the weighted cart and one would be with the unweighted cart. 

The mass used to calculate the EPK would be the mass of the AEV as the goal is to measure 

the efficiency of the AEV itself. With the weighted cart the AEV used 1,346.28 J/Kg of energy 

and with the unweighted cart the AEV used 1408.03 J/kg of energy (Table 1). 

 

 

 

 

 

 

 

  



Introduction: 

The AEV project was created to develop an energy efficient and autonomous vehicle to 

transport people and cargo along a monorail inside a national park. The vehicle must conserve 

as much energy as possible since the power at the park is limited and stranding the tourists or 

cargo is not an option. The project is important because creating a model AEV allows for rapid 

prototyping and configurations that if otherwise started on a large scale would take months or 

even years to complete, however using small scale AEVs, major changes can be completed in 

days and smaller changes can be completed in hours. The AEV will focus on energy 

management, operation efficiency, and operational consistency. The AEV will go slow enough 

to allow for the passengers and cargo to have a comfortable ride ensuring that passengers do 

not fall off the cart. The AEV will have energy per kilogram optimized to prevent energy waste. 

AEV Initial Concepts: 

In Performance Test 1 two designs were compared to see which was better suited to the task 

explained above. Design 1 was inspired by the sample AEV given at the beginning of the lab, 

from there it was adapted for the highest energy efficiency and the lowest mass, as well 

improving the aerodynamic drag experienced by the model through the addition of a battery 

carrier which was 3-d printed. Design 2 attempted to further these improvements made through, 

attempting to further decrease drag by decreasing the width of the airframe used. This also 

attempted to lower the mass used and decrease the energy used per kilogram. Design 2 was 

made for its striking resemblance to the x-wing from Star Wars. Additionally, it would be more 

stable. The designs originally created in lab 1 were all abandoned besides Design Model B 

(Figure 1), this was because Design Model B incorporated the best features known at that time. 

However, since then experiments have improved the knowledge and better choices have been 

made. For instance, the choice to put the Arduino on the bottom to allow for an optimal center of 

gravity location. Or the incorporation of an aerodynamic battery carrier which decreases drag 

and optimizes C.G location. All changes were based off experience gained in experiments. The 

prototypes allowed for the AEV to have the best starting configuration possible that would then 

be edited to a more efficient model. For instance, the aerodynamic shield in Design Model B 

allowed for the thought of the aerodynamic shield on the battery carrier. Which will also be used 

to hold the servo that will hook onto the cart (shown at the start of the AEV in figures 2 and 3.  

 



 
(Figure #1): Orthographic projection of design model B (Nick Stassen’s design) 

 

Results and Discussion: 

 
 

(Figure #2): AEV Design 1 Solidworks model 



 
(Figure #3): AEV Design 2 Solidworks model 

Performance Test 1 generated valuable information in determining the most energy efficient 

AEV (Advanced Energy Vehicle) design. Both designs in figures #2 and #3 above were similar 

in many aspects: monorail hangar attachment placement, hangar attachment used, Arduino 

assembly controller placement, and others. The differences between the vehicles were the 

number of wings, the central plastic base used for holding all the components, the motor 

placement, and the battery placement. This 3-D printed part on both vehicles seen above as the 

pale gray object on the nose of the vehicles was created to holster the battery on the front of the 

vehicle while allowing better aerodynamics. The servo which connected the AEV to the cart was 

also fitted on the 3-D printed part. Three designs were originally created by the group in 

experiment 3 (with the addition of a sample design for a total of 4) which encouraged creative 

thinking regarding combinations of parts for energy efficiency. These combinations in 

experiment 3 influenced the structures of designs 1 and 2 in several ways- most notably the 

need for a 3-D printed part (See figures #4, #1, and #5 for design concepts in experiment 3). 



 
(Figure #4): Orthographic projection of design model A (Ben Bazan’s design) 

 

 

 

(Figure #5): Orthographic projection of design model C (Matthew Geiger’s design) 

 



 
(Table #2): Concept screening for designs A, B, & C 

 

 
(Table #3): Concept scoring for designs A, B, & C 

Design 1 was selected by judging other designs based off a design concept screening and 

scoring sheet (refer to tables #2 and #3 for concept screening and scoring sheets respectively). 

A design was created by each team member with the addition of the sample design (from 

experiment 1) for a total of 4 (refer to figures #4, #1, and #5 for orthographic projections of the 3 

original designs). These designs were then judged on characteristics that were vital to the 

success of the AEV: balance, center-of-gravity location, durability, cost, environmental impact, 

look, etc. Design B from the concept screening and scoring was chosen to continue onto 

Performance Test 1 under the new name of “Design 1”. Design 2 in Performance test 1 was 

made to incorporate the fundamental qualities of design 1 based off the concept screening and 

scoring sheet, such as low energy usage and center of gravity location however it would also 

add stability and looks to the AEV. The goal with Design 2 was to create a better looking AEV 

more stable, as well as improving the aerodynamic characteristics of the design by decreasing 

the width of the base section. 

Ultimately, the double wing structure of Design 2 (figure #3) led to an increase in weight as well 

as a decrease in the thrust experienced by the AEV because of an increase in drag between the 



propeller slipstream and wing structure, making Design 2 less efficient. While the graphs and 

data alone support this energy inefficiency hypothesis, Design 2 was unable to traverse the 

incline portions of the track with the code that Design 1 ran on. This comparison allowed a 

simple conclusion to be made about the energy usage of Design 2. However, subsequent tests 

were done to ensure this, the half-track run code used was then modified to allow Design 2 to 

complete the half-track run. Modifications consisted of increasing motor power percentages and 

changing the absolute position values where the AEV needed to stop. Design 1 consumed a 

total of 69.323J of energy completing the half-track run (Table #4), while Design 2 consumed a 

total of 114.18J on the same run (Table #4). This was a significant difference which the team did 

not expect. The team made Designs 1 and 2 to be similar, however Design 2 performed poorly 

in comparison. This information contributed to the decision to continue with Design 1.  

Performance Test 1 was important to the design process because it demonstrated the need for 

a light vehicle. Future changes made to the AEV would need to help make the vehicle lighter or 

stay the same weight and improve aerodynamic characteristics. Design 2 was less aerodynamic 

than design 1 for one reason, the double winged structure increased the drag between the 

wings and the propeller slipstream, which caused the AEV to benefit from less force than the 

motors were producing. Furthermore, one of design 2’s motors were offset a couple degrees. 

While it was mostly unnoticeable to the naked eye, this error likely impacted the motors 

contribution to the overall thrust of the vehicle. However, this offset motor was an innate part of 

the vehicle based on the parts available, meaning it could not be fixed without an improvement 

in available building parts or manufacturing new building parts. This process would likely be a 

waste of time and possibly add more weight to the vehicle. The System Analysis tests 1 and 2 

gave the team direction with how to code the designs for Performance Test 1. This experiment 

involved testing different coding functions which have the same outcome but different ways of 

getting there. Most notably, these tests compared using the celerate command and the 

motorSpeed command. Figures #6 and #7 show the celerate and motorSpeed performances 

during their respective flat track runs. The motorSpeed command uses less total energy in this 

run and as well takes less time. Additionally, a fatal error could occur when using the celerate 

command, if the cellerate command were to be active (meaning the code is still increasing the 

power of the motors) and the AEV were to go past a position that was used in the next line of 

code to stop the AEV (in Arduino it would look like this:  celerate(10,40,4,4); 

goToAbsolutePosition(10*(8/3.901))), then the AEV would never stop and the safety of 

passengers would be at risk. This information showed the team that the motorSpeed command 

should be used primarily rather than celerate, however small time values for celerate could be 

used to reduce strain on motors. The half-track code was created using this style. The full track 

coded design and final vehicle design were heavily influenced by performance tests.  

 



 
(Figure #6): describes the AEV flat track run, supplied power versus time, using celerate 

commands, along with a phase breakdown. 

 
(Figure #7): describes the AEV flat track run, with supplied power versus time, using 

motorSpeed commands. Along with a phase break down. 

 

 



 

(Figure #8). System Efficiency vs. Advance Ratio 

Experiment 4 tested three different propellor types each in 2 different configurations. These two 

configurations were pusher and puller (tractor). As seen above in figure #8, EF-3 bladed puller 

configuration has the best propulsion efficiency for most of the advance ratio. In addition, the 

EF-3 blade pusher configuration comes second place until around 0.5 advance ratio. This 

showed that the EF-3 bladed propellors will give the highest efficiency at lower advance ratios 

(approximately 0.7 and below), but in both configurations. These advance ratios tend to occur at 

motor power percentages around 30-40%. The code used in all AEV runs have motor power 

percentages primarily around 10-40% meaning EF-3 was the most suitable pick for the 

propellors. 

 



 

(Figure #9): Supplied Power vs. Time (with phase breakdowns) for Design 1 Half-track run 

Figure #9 shows the supplied power to the motors vs. time on the half-track run for design 1. 

The different phases of the run are indicated by colored dashed boxes. The highest energy 

phase was observed at the start of the run in phase 1. High energy was observed due to the 

AEV needing to get up an incline in pusher configuration- the less optimal configuration. Phase 

2 represents the vehicle traveling on the horizontal after the incline and getting over to the 

pickup station at a low speed. Phase 3 is where the vehicle stopped at the station for 4 seconds 

and then reversed. When the vehicle is braked, energy levels are approaching zero. Phase 4 is 

where the vehicle accelerated along the horizontal before going down the now decline. Phase 5 

shown in magenta is where the vehicle reduced its power not only because it was going down a 

decline and thus had more speed but also because it was going around a turn near the end of 

the phase. Phase 6 in orange shows the power after the vehicle made it around the turn and 

needed more power. In Phase 7 power was cut to come to a stop at “the waves”, this lasted 4 

seconds. In Phase 7 shown in a cyan dashed box is where the vehicle increase power to make 

it up the incline, note how its is significantly less power because it is in puller configuration. In 

Phase 8 the vehicle uses a small amount of power to traverse the horizontal for another 3 feet.  



 

(Figure #10): Supplied Power vs. Time (with phase breakdowns) for Design 2 Half-track run 

Figure #10 shows the supplied power to the motors vs time with the different phases being 

indicated by dashed boxes (same as figure #9). As seen above, design 2 reached a maximum 

of 18 Watts of supplied power whereas in Figure #9 design 1 reached a maximum of only 15 

Watts (both maximums being in phase 1). This trend of design 2 using more power was 

consistent throughout the entire comparison of the two runs. Like design 1, phase 1 was the 

highest energy phase because it involved the AEV going from stopped to ascending an incline. 

This required a significant amount of power and design 2 was both heavier and less 

aerodynamic. There two reasons most likely account for the increase in supplied power in 

design 2 compared to design 1. Phase 2 shows the AEV using a lower motor speed to glide to 

the pickup station. Phase 3 is the AEV breaking at the pickup station. Phase 4 is the largest 

difference between Figures #9 and #10 because it combined phases 4 and 5 from Figure #9 

into one phase. This change happened because design 2 couldn’t make the half-track run on 

the lower power of phase 5 from design 1’s code. This meant the power needed to be increased 

during that time interval of the run for design 2. Ultimately the team just continued the phase 4 

from design 1’s code into phase 5 of design 2’s code, and this worked. Phase 5 shows the 

deceleration around the bend on the half-track run. Phase 6 is where design 2 needed a little 

more power after going through the bend. Phase 7 is the AEV stopping at the waves location 

along the half-track run. Then for phase 8, the second most energy-intensive phase, the vehicle 



went up the second incline in puller configuration. Phase 9 shows the vehicle being at the top of 

the incline and inching toward the stop. Phase 10 shows the vehicle stopping.  

 

 

 

(Figure #11): Supplied Power vs. Distance (both designs plotted together) 

As mentioned above, design 2 clearly used more energy than design 1. Figure #11 above 

shows the supplied power to the motors in designs 1 and 2 vs the distance they traveled. Figure 

#11 agrees with the observation that design 2 used more energy. Interestingly, they show the 

same levels of supplied power in some places. However, This happened because they are 

coasting at those points. Around the 2-8 meters mark, the graphs looks somewhat the same 

because the designs are both coming down from the first incline and already have potential 

energy just from the height. This means less energy was needed to travel further and they 

cruised up until they stopped around 8-9 meters.  

 

 

 



Phase   Arduino Code  Energy per Phase (J)  

1  motorSpeed(4,45)  37.86  

2  motorSpeed(4,14)  3.0633  

3  brake(4) goFor(4)  0.949  

4  motorSpeed(4,22)  22.47  

5  motorSpeed(4,16)  13.92  

6  celerate(4,15,12,1) motor Speed(4,22)  3.64  

7  brake(4) goFor(4)  0.492  

8  motorSpeed(4,30)  23.115  

9  motorSpeed(4,16)  30.894  

    Total energy per kilogram 507.07 

(Table #4): Supplied Energy for each line of code for design 1 

Figure #9 visualized the supplied power vs time with phase breakdowns graphically for design 

1. Table #4 above shows the same concept in the form of total joules per phase and the code 

executed at the phase. As mentioned before, phase 1 required the most energy for designs 1 

and 2. This is because the motors need to be ran at higher powers to get the designs from 

stopped to moving up an incline. As seen above in Table #4, the AEV starts off with the 

motorSpeed function to start the motors. The First parameter represents both motors being 

activated and the second represents the power percentage the motors are to be ran at. 45% is 

the highest motor power percentage the team used for design 1. The energies per phase where 

the AEV was braked equaled around 0 which was expected. The AEV motors were only ran at 

30% for the second incline because it was in puller configuration which is the optimal 

configuration to be in.  

 

Phase Arduino Code  Energy per phase (J) 

1 motorSpeed(4,50) 34.303 

2 motorSpeed(4,20) 4.6043 

3 brake(4) goFor(4) 0.022 

4 motorSpeed(4,22) 39.727 

5 motorSpeed(4,16) 5.8493 

6 celerate(4,15,12,1)  2.435 

7 motorSpeed(4,22) 2.281 

8 brake(4) goFor(4) 24.14 

9 motorSpeed(4,35) 3.4416 

10 brake(4) 0.09102 

  

326.232 
Total energy per 
kilogram  

(Table #5): Supplied Energy for each line of code for design 2. 

Figure #10 visualized the supplied power vs time with phase breakdown graphically for design 

2. Table #5 above shows the same concept in the form of total joules per phase and the code 

executed at the phase. Table #4 and #5 show practically the same code. However, design 1 in 

Table #4 tends to use less joules per phase than design 2 with a few exceptions. In addition, the 



code in Table #5 for design 2 generally has larger power percentages for the motors. This is 

due to design 2 being less aerodynamic and heavier (thus needing more power to move).  

 

Design Energy (J) Weight (kg) Energy per kilogram (J/kg) 

1 69.323 0.269 257.7 

2 114.18 0.35 326.2 

(Table #6): Energy per kilogram for each design 

Table #6 shows the total energy of both designs on the half-track run, the weight of each 

design, and the energy per kilogram of each design. As seen above, design 1 uses roughly 45 

less total joules than design 2 making it a clear winner in terms of total energy cost. As 

mentioned earlier in the discussion, design 2 weighed more which likely contributed to the high 

energy consumption. Also, the energy per kilogram of design 1 is a clear winner as seen above 

with its energy per kilogram being 257.7 J/kg compared to design 2’s 326.2 J/kg.  

 

 

(Figure #12) details the solidworks model of the hook used by the AEV. 

In order to connect to the cart a hook was designed using solidworks (see figure ##). The hook 

was made to essentially snap into the arm of the servo a screw was used to secure the arm into 

the gear of the servo. The hook was designed to have a small width so it could enter the loop 

attached to the cart with no problem and also have a medium radius so that the AEV didn’t need 

to be too close to the cart where other parts of the AEV could interfere with the cart/hook. The 



medium radius also allowed the AEV-cart configuration to pass around bends without the hook 

pulling the cart off of the track. Another advantage of the medium radius of the hook was the 

allocation of changes in height, when changing from the flat portion of track to an incline portion 

the AEV would be at an angle compared to the cart, while this only occurred for a short amount 

of time (until the cart reached the incline portion of the track) it was essential that the hook 

would still be able to pull the cart at these angles. The only problem the AEV experienced when 

connecting to the cart was the speed at which the servo was moving the hook to connect to the 

cart. The servo would write itself to zero to quickly and if the cart was in the wrong position the 

hook would hit the loop of the cart and fall off the track. To change this a servo write function 

was created. Although simple it proved to be an extreme benefactor when connecting to the 

cart. The function would initialize the integer i at a starting value when connecting to the cart the 

value would be 70 degrees. Using a for loop the integer would decrement every 20ms using i—

until i was equal to 0. This meant the servo would take around 1.4 seconds to go from its initial 

position to its 0 position, allowing the team ample time to move the cart if in the wrong position. 

The only problem experienced during the full track run was with the weighted cart, one of the 

“dogs” ears’ would smack into a bracket holding the track on the bend. To get around this issue 

the power of the AEV was shortly increased and then would be turned off, this allowed for a 

separation distance between the cart and the hook which allowed the cart to pass without the 

ear of the dog smacking into a bracket. Although this does slightly increase the power 

consumption for the AEV around the bend it is necessary to complete the track.  

The main change for the energy optimization that was performed was the inclusion of the incher 

function. This incher function that was included in the unweighted cart run proved to be an 

integral part of the code in the weighted cart run. With the mass of the cart being higher other 

coding strategies needed to adjust motor speeds and braking distances in order to account for 

this change in momentum. However using the incher function the braking distance values 

changed only slightly. This is because the incher function operates at what is essentially the 

bare minimum to move forward, so when a braking distance is reached the AEV stops almost 

immediately.  

Although no changes occurred to the physical structure of the AEV several changes were made 

to the code of the AEV. The main change required was coming from the grand canyon down 

toward the waves, a test proved that if the AEV-cart configuration came into the bend at too 

great of a speed the ear of one of the dogs would smack into the bracket holding the track and 

the AEV and cart derailed. This led to the motor power being cut near the beginning of the inline 

so the AEV-cart configuration would coast toward the beginning of the bend, from there motor 

speed was written to a value that would prevent the AEV-cart configuration from going too fast 

and derailing. The other main change also dealt with the dog ear-bracket collision problem. 

When coming from the rocky mountains towards hocking hills the ear of the dog would collide 

with the bracket, it had to deal with the angle at which the AEV was pushing the cart. In order to 

avoid this the AEV would increase the power to the motors at the beginning of the bend and 

then cut the power to the motors approximately 4 inches before the collision area. This allowed 

for the AEV to gain speed before the collision area in which it would then coast through the 

collision area. This led to the loop of the cart and the hook of the AEV (the contact points of both 

vehicles) to gain some separation.  



 

(Figure #13): Details the Supplied Power vs. Distance of the Weighted and Unweighted cart 

runs.  

In the above figure the weighted cart run is shown to have a higher maximum usage of energy. 

This spike to upwards of 20 watts occurs when the AEV reverses its motors to stop on the 

incline portion near Alaska. This is because the weighted cart has a higher force of gravity in the 

x direction that requires a higher motor speed and thus a higher power percentage to offset.  



 

(Figure #14): details the Supplied power vs. time for the unweighted cart run with energy phase 

breakdown. 

 

 

 

(Figure #15): Describes the Supplied Power vs. Time for the Weighted cart run with phase 

breakdown.  



When comparing Figures 14 and 15 there are a couple of important distinctions to be made. In 

figure 15 the fourth phase shows little to no power being supplied to the motors. This is because 

during this time the vehicle is coasting down the incline portion and headed towards the bend. 

Whereas the unweighted cart was currently supplying power to the motors. This was one of the 

main reasons for the energy per kilogram decreasing between the two runs. Another difference 

between the runs is in the violet box, or the 15th box from the left of figure 15. This momentary 

spike in power correlated to when the AEV was going around the bend. As mentioned above 

this increase in power was necessary for the AEV-cart configuration to make it around the bend 

and not get stuck from the ear of the dog hitting the bracket that supports the track. Similarities 

between the two runs include the main burst of power at the beginning of the run to make it up 

to the grand canyon to pick up the cart, as well as the braking maneuver done by the AEV when 

going down the incline towards the maintenance station. 

 

 

 

 

Phase  Code   Time   Energy (J)  

1  motorSpeed(4,40);  3.232  47.164  

2  incher function  1.657  10.397  

3  brake(4); rotateServo(0);  9.944  0.22  

4  motorSpeed(4,24); goToAbsolutePosition(48);  4.47  25.98  

5  motorSpeed(4,15); goToAbsolutePosition(-168);  2.65  8.637  

6  motorSpeed(4,20); goToAbsolutePosition(-280);  1.988  7.577  

7  brake(4); goFor(5);  4.8066  2.004  

8  motorSpeed(4,40); goToAbsolutePosition(-588);  2.155  24.7636  

9  incher function to -510  0.829  4.69  

10  brake(4); goFor(7);  6.7955  0.065  

11  motorSpeed(4,30); goToAbsolutePosition(-512);  4.8066  41  

12  reverse(4); motorSpeed(4,36);  4.641  43.677  

13  brake(4); reverse(4); motorSpeed(4,24);  1.49  10.452  

14  goToAbsolutePosition(-420); brake(4); goFor(5);  5.304  2.93  

15  motorSpeed(4,37); goToAbsolutePosition(-100);  5.14  56.65  

16  incher Function to twelve  4.972  2.348  

17  motorSpeed(4,43); goToAbsolutePosition(130);  6.961  80.31  

18  brake(4); goFor(5); rotateServo(60);  4.807  0  

19  motorSpeed(4,20); goToAbsolutePosition(120);  1.988  7.067  

20  incher function but modified to brake on descent   2.9834  13.13  

21  same incher function   3.149  5.64  

Total Energy per kilogram    1,408.00  

(Table #7): describing the energy phase breakdown with code for the AEV during the 

unweighted cart run. 



 

 

 

 

 

 

 

 

 

 

 

Phase  Code Time Energy (J) 

1 
rotateServo(60); motorSpeed(4,40); 
goToAbsolutePosition(54*(8/3.902)); 2.855 34.61 

2 brake(4); goFor(5); rotateServo(0); goFor(4); 10.13 1.273 

3 
reverse(4); motorSpeed(4,26); 
goToAbsolutePosition(48*(8/3.902)); 4.24 27.875 

4 brake(4); goFor(8);  8.1 1.54 

5 motorSpeed(4,29); goToAbsolutePosition(-142*(8/3.902)); 4.788 35.11 

6 brake(4); goFor(5);   4.788 0.51 

7 
motorSpeed(4,44); goToAbsolutePosition(-256*(8/3.902)); 
inching function 3.5 39.422 

8 brake(4); goFor(4); 3.87 0.008 

9 

reverse(4); motorSpeed(4,33); goToAbsolutePosition(-
268*(8/3.902)); motorSpeed(4,30); goToAbsolutePosition(-
258*(8/3.902)); 4.42 43.511 

10 motorSpeed(4,52); goFor(1); 0.55 8.708 

11 motorSpeed(4,36); goFor(3); 3.315 32.511 

12 
brake(4); reverse(4); motorSpeed(4,26); 
goToAbsolutePosition(-202*(8/3.902)); 1.66 12.453 

13 brake(4); goFor(5); 4.97 0.682 

14 motorSpeed(4,35); goToAbsolutePosition(-120*(8/3.902)); 3.13 32.28 

15 motorSpeed(4,44); goToAbsolutePosition(-96*(8/3.902)); 0.55 7.8 

16 brake(4); delay(750); motorSpeed(4,65); delay(350); 1.29 15.84 

17 motorSpeed(4,33); goToAbsolutePosition(-40*(8/3.902)); 3.13 28.44 

18 
brake(4); inching function(-12*(8/3.902)); brake(4); 
goFor(5); 5.16 2.52 

19 motorSpeed(4,44); goToAbsolutePosition(66*(8/3.902)); 5.16 74.39 



20 inchingFunction(79*(8/3.902)); 1.105 7.71 
21 brake(4); goFor(5); rotateServo(70); goFor(1); 7.73 1.59 

22 
reverse(4); motorSpeed(4,22); 
goToAbsolutePosition(55*(8/3.902)); 3.315 21.388 

23 
modification to incher code allowing us to slow down on 
incline 4.6 4.99 

total   

total energy per 
kilogram 1346.28 

(Table #8): describing the energy phase breakdown with code for the AEV with the weighted 

cart final test.  

In tables 7 and 8 it shown that the total energy per kilogram decreased between the unweighted 

cart run and the weighted cart run. This is due to a couple of factors the main reasons being that 

as stated above the weighted cart configuration (WCC) coasted down the incline from the grand 

canyon towards the bend whereas the unweighted cart configuration (UWCC) used power 

during that time. Another reason for the decrease in energy usage could be the change in 

batteries. The unweighted cart run used the battery that the AEV had been using for all previous 

tests. However, one of the wires came out of the terminal used to charge the battery, while at 

first it was thought this could be overcame either by holding the wire into the terminal by hand or 

by soldering new wires to another terminal it could not and the battery died. A new battery was 

then used which could account for the drop in energy usage as it might be more efficient at 

delivering power. 

The main area in which energy could be saved would be when going around the bend coming 

from the rocky mountains toward the hocking hills stop. Although the increase in power to 

increase separation between the hook of the AEV and the loop of the cart was necessary there 

is a way in which it would no longer be necessary. If the weighted cart’s cargo could configured 

to better match the specifications of the track that it goes along this maneuver would no longer 

be necessary and it would save a lot of energy. To do this either the housing of the cargo could 

be changed to have more length and less height, this would allow for the same volume of cargo 

to be transported yet get rid of the need for the maneuver. The other way in which this could be 

accomplished would be in increasing the length of the arm that connects the cart platform to the 

track. In order for the loop to remain at a constant height relative to the AEV the loop would 

need to be elevated using a 3-d printed part that would assist in the aerodynamics of the cart. 

An additional way in which energy could be conserved would be by a change to the track of the 

monorail, the distance between the incline portion of the track leading to the grand canyon 

station and the maitenance station location would allow the AEV to experience more frictional 

forces before it came to the maitenance station. This would decrease the amount of energy the 

motors use in braking to slow the AEV down. While the energy to get to the grand canyon 

station would increase coming from the maitenance station, a position could be found in which 

the energy saved would be the greatest when taking the difference between the energy saved 

from the braking maneuver and the energy lost using more power to traverse more distance 

between the grand canyon station and the maitenance station. 

The main issue experienced during the weighted cart run was with the inching function. While 

the approximate power percentage was being discovered to make it up the incline toward the 

grand canyon station and not be left with too much power, occasionally the AEV would get stuck 

at the top of the incline. The AEV would then be freed however the inching function was 



increasing motor speed while it was stuck, however the motor speed did not change until later. 

This resulted in the AEV being freed and continuing normally until all of a sudden the motor 

speed would be increased to about 70 percent. The AEV would then blast forward and run into 

the cart causing the cart, the AEV or both to derail and cause damages to both themselves and 

their surroundings. An if statement was implemented in an attempt to prevent this from 

happening however it was discovered that the if statement was detecting a motor speed greater 

than what it was supposed to even though the motor speed was not at that value. This resulted 

in the inching function being broke out of and not moving the AEV into place. Eventually the 

incher function at the grand canyon station was discarded due to these repeated issues. 

However other incher functions such as the one at Alaska and the incher function used when 

dropping the cart off at the grand canyon station were implemented in the code.  

Overall the stop on the incline near Alaska was relatively easy to implement. The main problem 

that existed was moving the WCC from the Alaska stop towards the incline. If the motor speed 

and subsequently the speed of the WCC was too great then the WCC would surpass the stop 

on the incline and go all the way to the bottom of the incline where it would then begin to climb 

the incline. Obviously this wasted energy and was not desired, to account for this 2 major 

changes were made. First the motor speed that the WCC used to begin with at the Alaska stop 

was decreased halfway toward the beginning of the incline. This allowed for the WCC to gain 

some speed and then remain at a lower speed. Secondly the motor speed was briefly increased 

to a large value to slow the vehicle from its current direction (toward the bottom of the incline) 

and then after a second the motor speed was decreased to maintain a zero velocity value.  

 

Conclusion and Recommendations: 

Through the development of the Advanced Energy Vehicle (AEV) concepts over C++ 

programming, operational consistency, and operational efficiency were taught. Using concept 

screening and scoring sheets the less optimal AEV designs were weeded out. This left us with a 

design that excelled in multiple aspects including affordability, aerodynamics, and weight. This 

design went on to be known as design 1. When design 1 was compared to design 2 in terms of 

energy usage, it was more efficient. This led to the decision of design 1 being utilized for the 

final run. The coding style knowledge obtained from these tests was carried on throughout the 

rest of the AEV experiments in many ways: motorSpeed was used more than celerate, avoiding 

reversing and powering motors to break, and slowing down the servo. These coding styles can 

especially be seen in the final code. Overall, the efficiency of the AEV when compared to other 

teams was in the top 3 out of approximately 13. This was a huge success considering how 

important being energy efficient was for the mission. 

The total energy usage per kilogram of the WCC was 1346 J/kg (Table #9), however there is no 

real reference for that amount of energy. So, by converting the total joules to its kilocalorie 

equivalent it is easier to gain a grasp on that amount of energy- which comes out to be 0.322 

kilocalories (kcal) of energy. Since the average person burns between 0.3-0.6 kcal when doing 

a singular push up, the amount of energy consumed by the AEV is not that much. Especially 

when considering that an average human consumes around 2,250 kcal a day. This low 

consumption of energy is very surprising, which just goes to show how inefficient humans are at 

converting energy. 



The main error incurred during the AEV’s development was with the inching function. The 

function created was a while loop which iterated a difference in position over a time and 

increased or decreased the motor speed accordingly 5 to 10 times a second. The inching 

function operated under the assumption that all marks that the AEV travelled were accounted 

for. However, as is evident from the run this is not the case. In Table #9 it is shown in phases 1 

and 19 that the goToAbsolutePosition function used to make it up the incline changes from 

phase 1 to 19. In phase 1 the goToAbsolutePosition function uses a value of 54 inches 

multiplied by the constant to convert into marks, however in phase 19 that value changes to 66 

inches multiplied by the constant to convert into marks. This means that a total of around 12 

inches were lost during the run from the wheel skidding and not measuring distance. Skidding 

for the incher function is extremely dangerous as lost marks result in drastic motor speed 

changes. Resulting from these high changes in motor speed was almost always the derailing of 

the AEV and physical damage to components such as the servo and battery carrier. These 

setbacks delayed progress due to the AEV being inoperative, and delayed progress meant 

having to rush other tasks. 

Some recommendations to avoid these consequences would be to ensure a way to prevent the 

motor speed from being written to high values. Manufacturing better wheels that gripped to the 

track and did not slip or skid would ensure less marks lost during the run. An additional 

improvement would be adding more reflective tape patches, this would allow the reflectance 

sensors to measure more marks per second and improve the sampling time of the inching 

function.  

 

Appendix: 

Part  
# of 
parts Price per part  Total cost per part  

Arduino 1 100 100 

Electric motor 2 9.99 19.98 

Servo motor 1 5.95 5.95 

Count sensor 2 2 4 

Propeller 2 0.45 0.9 

Wheels  2 7.5 15 

2.5" x 7.5" Rectangle  1 2 2 

Trapizoids  2 1 2 

T-Shape Arm 1 3 3 

Angle Brackets 6 0.84 5.04 

Motor clamps 2 0.59 1.18 

Bulk screws and nuts 1 2.88 2.88 

Battery Carrier  1 .84 .84 

   Total  

   162.77 
(Table #9): Price Breakdown for AEV Design 1 

 



Part  # of parts Price per part  Total cost per part  

Arduino 1 100 100 

Electric motor 2 9.99 19.98 

Servo motor 1 5.95 5.95 

Count sensor 2 2 4 

Propeller 2 0.45 0.9 

Wheels  2 7.5 15 

T-Shape 1 2 2 

Trapizoids  4 1 4 

T-Shape Arm 1 3 3 

Angle Brackets 10 0.84 8.4 

Motor clamps 2 0.59 1.18 

Bulk screws and nuts 1 2.88 2.88 

Battery Carrier  1 .84 .84 

   total 

   168.13 
(Table #10): Price Breakdown for AEV Design 2 

 

No. Task Start Finish  Due Date Ben Matthe

w 

Nick % 

 complete 

1 AEV 1 

Construction 

2/2/2022 2/2/2022 2/2/2022 x x x 100 

2 AEV 1 Wind 

Tunnel 

Testing  

2/9/2022 2/9/2022 2/9/2022 x x x 100 

3 Wind Tunnel 

Data Analysis 

2/9/2022 2/16/2022 2/16/202

2 

x x x 100 

4 Progress 

Report 

2/9/2022 2/16/2022 2/16/202

2 

x x x 100 

(Figure #16): System Analysis 1 Schedule 

 

No. Task Start Finish  Due Date Ben Matthe

w 

Nick % 

 complete 

1 Code Flat 

Track Run  

2/16/202

2 

2/23/202

2 

3/8/2022 x  x 100 

2 Matlab Code 

for Flat Track 

Run  

2/16/202

2 

2/23/202

2 

3/8/2022  x  100 



3 Code Half 

Track Run 

2/23/202

2 

3/2/2022 3/8/2022 x  x 100 

4 Matlab Code 

for Half Track 

Run 

2/23/202

2 

3/2/2022 3/8/2022  x  100 

5 Progress 

Report  

2/16/202

2 

3/8/2022 3/8/2022 x x x 100 

 

(Figure #17): System Analysis 2 Schedule 

 

No. Task Start Finish  Due 

Date 

Ben Matthew Nick % 

 complete 

1 AEV 2 

Construction 

3/22/22 3/24/22 3/31/22 x x x 100 

2 AEV 2 Testing  3/22/22 3/24/22 3/31/22 

 

x x  100 

3 PDR 2/16/22 3/31/22 3/31/22 x x x 100 

3a Title page, Table 

of contents, & 

List of Figures  

3/28/22 3/28/22 3/31/22 x x x 100 

3b Executive 

Summary  

3/29/22 3/30/22 3/31/22 x   100 

3c Introduction 3/28/22 3/28/22 3/31/22  x  100 

3d AEV Initial 

Concepts 

3/28/22 3/29/22 3/31/22  x  100 

3e Results and 

Discussion  

3/28/22 3/28/22 3/31/22   x 100 

3f Conclusion and 

Recomendation 

3/29/22 3/30/22 3/31/22  x  100 

3g Appendix 3/21/22 3/31/22 3/31/22 x   100 

 

(Figure #18): Performance Test 1 Schedule 

 



 
(Figure #19): Daily Schedule for Performances 1,2,3, and 4 

 

 

Division of work statement 

Ben Bazan completed Appendix and Executive Summary components. Matthew Geiger 

completed the Introduction, AEV initial Concepts, Results and Discussion: Weighted and 

Unweighted carts, and the Conclusion and Recommendations. Nick Stassen completed the 

Results and Discussion.  

 

 

 

 

 

 

 

 



Unweighted cart run Arduino Code: 

rotateServo(60); 
  reverse(4); 
  motorSpeed(4,40); 
  goToAbsolutePosition(55*(8/3.902)); 
  int i=10; 
  motorSpeed(4,i); 
  while(getVehiclePosition()<(77*(8/3.902))){ 
    float current = getVehiclePosition(); 
    delay(200); 
    float next = getVehiclePosition(); 
    if(abs(next-current)/0.2<2){ 
      i++; 
      motorSpeed(4,i); 
    } 
    if((abs(next-current)/0.2)>2){ 
      i--; 
      motorSpeed(4,i); 
    } 
  } 
  brake(4); 
  goFor(5); 
  for(int i=60; i>=0; i--) 
  {                                    // allows the servo to rotate slowly rather than quickly  
    rotateServo(i); 
    delay(20); 
  } 
  goFor(4);                           // waiting for humans to connect the cart to the AEV if self-connect fails.  
  reverse(4); 
  motorSpeed(4,24); 
  goToAbsolutePosition(24*(8/3.902)); // traveling towards the now decline from the grandcanyon  
  motorSpeed(4,15); 
  goToAbsolutePosition(-84*(8/3.902)); 
  motorSpeed(4,20); 
  goToAbsolutePosition(-140*(8/3.902)); // increasing speed to make it to the waves 
  brake(4); 
  goFor(5); 
  motorSpeed(4,40); //increasing power to go up the incline towards alaska  
  goToAbsolutePosition(-244*(8/3.902)); 
  i=12; 
  motorSpeed(4,i); 
  while(getVehiclePosition()>(-260*(8/3.902))){ //same incher code to make it to alaska  
    float current = getVehiclePosition(); 
    delay(200); 
    float next = getVehiclePosition(); 
    if(abs(next-current)/0.2<2){ 
      i++; 
      motorSpeed(4,i); 
    } 
    if((abs(next-current)/0.2)>2){ 
      i--; 
      motorSpeed(4,i); 
    } 
  } 
  brake(4); 



  goFor(7); 
  reverse(4); 
  motorSpeed(4,30); 
  goToAbsolutePosition(-256*(8/3.902)); 
  brake(4); 
  reverse(4); 
  motorSpeed(4,36);  //stopping on the incline portion by alaska 
  goFor(5); 
  brake(4); 
  reverse(4);    
  motorSpeed(4,24); 
  goToAbsolutePosition(-210*(8/3.902)); //coasting into the next stop 
  brake(4); 
  goFor(5); 
  motorSpeed(4,37); 
  goToAbsolutePosition(-50*(8/3.902)); //going towards the hocking hills stop  
  brake(4); 
  i=10; 
  motorSpeed(4,i); 
  while(getVehiclePosition()>(6*(8/3.902))){  //using incher to stop at hocking hills  
    float current = getVehiclePosition(); 
    delay(200); 
    float next = getVehiclePosition(); 
    if(abs(next-current)/0.2<2){ 
      i++; 
      motorSpeed(4,i); 
    } 
    if((abs(next-current)/0.2)>2){ 
      i--; 
      motorSpeed(4,i); 
    } 
  } 
  brake(4); 
  goFor(5); 
  motorSpeed(4,43);   //powering up motors to make it up the incline towards the grand canyon  
  goToAbsolutePosition(63*(8/3.902));  
  i=10; 
  motorSpeed(4,i); 
  while(getVehiclePosition()<(74*(8/3.902))){ //same incher code  
    float current = getVehiclePosition(); 
    delay(200); 
    float next = getVehiclePosition(); 
    if(abs(next-current)/0.2<2){ 
      i++; 
      motorSpeed(4,i); 
    } 
    if((abs(next-current)/0.2)>2){ 
      i--; 
      motorSpeed(4,i); 
    } 
  } 
  brake(4); 
  goFor(5); 
  for(int i2=0; i2<=70; i2++) { //same slow servo rotation code 
    rotateServo(i2); 
    delay(20); 



  } 
   
  reverse(4); 
  motorSpeed(4,20); 
  goToAbsolutePosition(60*(8/3.902)); 
  reverse(4); 
  i=20; 
  motorSpeed(4,i); 
  while(getVehiclePosition()>(18*(8/3.902))){  //a modification to the incher code that allows it slow itself 
down while traversing the incline portion of the incline  
    float current = getVehiclePosition(); 
    delay(100); 
    float next = getVehiclePosition(); 
    if(abs(next-current)/0.1>2){ 
      i++; 
      motorSpeed(4,i); 
    } 
    if((abs(next-current)/0.1)<2){ 
      i--; 
      motorSpeed(4,i); 
    } 
  } 
  brake(4);  //stopping the motors and stopping at the maitenance station. 

 

Weighted cart run Arduino Code: 

rotateServo(60); 
  reverse(4); 
  motorSpeed(4,40); 
  goToAbsolutePosition(54*(8/3.902)); 
  brake(4); 
  goFor(5); 
  for(int i=70; i>=0; i--) 
  {                                    // allows the servo to rotate slowly rather than quickly  
    rotateServo(i); 
    delay(20); 
  } 
  goFor(4);                           // waiting for humans to connect the cart to the AEV if self-connect fails.  
  reverse(4); 
  motorSpeed(4,26); 
  goToAbsolutePosition(48*(8/3.902)); // traveling towards the now decline from the grandcanyon  
  brake(4); 
  goFor(8); 
  motorSpeed(4,29); 
  goToAbsolutePosition(-142*(8/3.902)); // increasing speed to make it to the waves 
  brake(4); 
  goFor(5); 
  motorSpeed(4,44); //increasing power to go up the incline towards alaska  
  goToAbsolutePosition(-256*(8/3.902)); 
  int i=10; 
  motorSpeed(4,i); 
  while(abs(getVehiclePosition())<(267*(8/3.902))){ //same incher code to make it to alaska  
    float current = getVehiclePosition(); 
    delay(200); 
    float next = getVehiclePosition(); 



    if(abs(next-current)/0.2<2){ 
      i++; 
      motorSpeed(4,i); 
    } 
    if((abs(next-current)/0.2)>2){ 
      i--; 
      motorSpeed(4,i); 
    } 
  } 
  brake(4); 
  goFor(4); 
  reverse(4); 
  motorSpeed(4,33); 
  goToAbsolutePosition(-268*(8/3.902)); 
  motorSpeed(4,30); 
  goToAbsolutePosition(-258*(8/3.902)); 
  brake(4); 
  reverse(4); 
  motorSpeed(4,52);  //stopping on the incline portion by alaska 
  goFor(1); 
  motorSpeed(4,36); 
  goFor(3); 
  brake(4); 
  reverse(4);    
  motorSpeed(4,26); 
  goToAbsolutePosition(-202*(8/3.902)); //coasting into the next stop 
  brake(4); 
  goFor(5); 
  motorSpeed(4,35); 
  goToAbsolutePosition(-120*(8/3.902)); 
  motorSpeed(4,44); 
  goToAbsolutePosition(-96*(8/3.902)); 
  brake(4); 
  delay(750); 
  motorSpeed(4,65); 
  delay(350); 
  motorSpeed(4,33); 
  goToAbsolutePosition(-40*(8/3.902)); //going towards the hocking hills stop  
  brake(4); 
  i=10; 
  motorSpeed(4,i); 
  while(getVehiclePosition()>(-12*(8/3.902))){  //using incher to stop at hocking hills  
    float current = getVehiclePosition(); 
    delay(200); 
    float next = getVehiclePosition(); 
    if(abs(next-current)/0.2<2){ 
      i++; 
      motorSpeed(4,i); 
    } 
    if((abs(next-current)/0.2)>2){ 
      i--; 
      motorSpeed(4,i); 
    } 
  } 
  brake(4); 
  goFor(5); 



  motorSpeed(4,44);   //powering up motors to make it up the incline towards the grand canyon  
  goToAbsolutePosition(66*(8/3.902)); 
  i=10; 
  motorSpeed(4,i); 
  while(getVehiclePosition()<(79*(8/3.902))){ //same incher code  
    float current = getVehiclePosition(); 
    delay(200); 
    float next = getVehiclePosition(); 
    if(abs(next-current)/0.2<2){ 
      i++; 
      motorSpeed(4,i); 
    } 
    if((abs(next-current)/0.2)>2){ 
      i--; 
      motorSpeed(4,i); 
    } 
  } 
  brake(4); 
  goFor(5); 
  for(int i2=0; i2<=70; i2++) { //same slow servo rotation code 
    rotateServo(i2); 
    delay(20); 
  } 
  goFor(1); 
  reverse(4); 
  motorSpeed(4,22); 
  goToAbsolutePosition(55*(8/3.902)); 
  reverse(4); 
  i=25; 
  motorSpeed(4,i); 
  while(getVehiclePosition()>(6*(8/3.902))){  //a modification to the incher code that allows it slow itself 
down while traversing the incline portion of the incline  
    float current = getVehiclePosition(); 
    delay(100); 
    float next = getVehiclePosition(); 
    if(abs(next-current)/0.1>2){ 
      i++; 
      motorSpeed(4,i); 
    } 
    if((abs(next-current)/0.1)<2){ 
      i--; 
      motorSpeed(4,i); 
    } 
  } 
  brake(4); 
  reverse(4);//stopping the motors and stopping at the maitenance station.  
  i=10; 
  motorSpeed(4,i); 
  while(getVehiclePosition()>(5*(8/3.902))){  //  trying to stop backwards 
    float current = getVehiclePosition(); 
    delay(100); 
    float next = getVehiclePosition(); 
    if(abs(next-current)/0.1>2){ 
      i--; 
      motorSpeed(4,i); 
    } 



    if((abs(next-current)/0.1)<2){ 
      i++; 
      motorSpeed(4,i); 
    } 
  } 
  brake(4); 

 

 

MATLAB Code:  

%==================================================================== 

% Name: Matthew Geiger 

% Date: April 20th 2022 

% Class: 3:05 pm 

% 

% Last edited: 4/20/2022 

% 

%  

% 

% Program Title: Final Test Analysis 

% 

% Program Description: This program's purpose is to convert the  

% EEPROMM data into usable values (inches velocity time(s)) as well as 

% to determine the energy used. 

% 

% 

%==================================================================== 

  

  

clear; 

clc; 

data=xlsread("Final_Test_m"); 

tA=data(:,1); 

iA=data(:,2); 

vA=data(:,3); 

mCum=data(:,4); 

mPos=data(:,5); 

D=0.0762; %Diameter of propeller 

m=input('Please enter the weight of the AEV in kilograms: '); 

  

%With the data now in variablwes we can calculate the variables we 

want 

  

T=(tA./1000); %Time in seconds 

I=(iA./1024*2.46*(1/0.185)); %current in amps 

V=((vA./1024)*15); %voltage in volts 

Pos=(0.0124.*mCum); %distance traveled in meters 

RelPos=(0.0124.*mPos); %relative positon in meters 

SupP=(I.*V); %power in watts 

for i=1:(length(SupP)-1) 



    IncE(i)=(((SupP(i)+SupP(i+1))/2)*(T(i+1)-T(i))); %Incremental 

energy in joules 

end 

E=sum(IncE);% Total energy in joules 

TotE=E/m; %Total energy in joules per kilogram 

  

for i2=2:length(T) 

    vel(i2)=((RelPos(i2)-RelPos(i2-1))/(T(i2)-T(i2-1))); 

end 

KE=(1/2*m.*(vel.^2)); %calculates instantaneous kenetic energy  

PropRPM=((-64.59.*(I.^2)+1927.25.*I-84.58)*0.8); % equation for 

finding rpm of propeller based off current 

J=(vel./((PropRPM'/60)*D)); 

for i3=1:length(J) 

    if J(i3)<=0.15 && SupP(i3)==0 

        J(i3)=0; 

    elseif J(i3)<=0.15 && SupP(i3)>0 

        J(i3)=0.15; 

    end 

end 

  

PropEff=abs(-454.37.*(J.^3)+321.58.*(J.^2)+22.603.*J);  

aa=find(PropEff>100); 

for ac=1:792 

    while PropEff(ac)>100 

        PropEff(ac)=(PropEff(ac)-100); 

    end 

end 

  

plot(T,SupP); 

grid on 

xlabel("Time (seconds)"); 

ylabel("Supplied Power (Watts)"); 

title("Supplied Power (W) vs. Time (s)"); 

  

ab=ginput(23); 

  

figure; 

plot(Pos,SupP); 

grid on 

xlabel("Position (meters)"); 

ylabel("Supplied Power (Watts)"); 

title("Supplied Power (W) vs. Position (m)"); 

  

figure;  

plot(Pos,vel); %plots the velocity vs position of the AEV 

grid on 

xlabel("Position (meters)"); 

ylabel("Velocity (m/s)"); 

title("Velocity (m/s) vs. Positon (m)"); 

  

figure; 



plot(Pos,KE); 

grid on  

xlabel("Position (meters)"); 

ylabel("Kinetic Energy (Joules)"); 

title("Kinetic Energy (J) vs. Position (m)"); 

  

figure; 

plot(J,PropEff,'v'); 

grid on 

xlabel("Advance Ratio"); 

ylabel("Propulsion Efficiency (%) "); 

title("Propulsion Efficiency (%) vs. Advance Ratio"); 

  

  

%Phase 1 energy  

xR1=ab(1); 

xL1=0; 

Ep1t=(xR1-xL1); 

iL1=knnsearch(T,xL1); 

iR1=knnsearch(T,xR1); 

Ep1=IncE(iL1:iR1); 

Ep1tot=sum(Ep1); 

Ep1to=Ep1tot/m; 

  

%Phase 2 energy 

xR2=ab(2); 

xL2=xR1; 

Ep2t=(xR2-xL2); 

iL2=knnsearch(T,xL2); 

iR2=knnsearch(T,xR2); 

Ep2=IncE(iL2:iR2); 

Ep2tot=sum(Ep2); 

Ep2to=Ep2tot/m; 

  

%Phase 3 energy 

xR3=ab(3); 

xL3=xR2; 

Ep3t=(xR3-xL3); 

iL3=knnsearch(T,xL3); 

iR3=knnsearch(T,xR3); 

Ep3=IncE(iL3:iR3); 

Ep3tot=sum(Ep3); 

Ep3to=Ep3tot/m; 

  

%Phase 4 energy 

xR4=ab(4); 

xL4=xR3; 

Ep4t=(xR4-xL4); 

iL4=knnsearch(T,xL4); 

iR4=knnsearch(T,xR4); 

Ep4=IncE(iL4:iR4); 

Ep4tot=sum(Ep4); 



Ep4to=Ep4tot/m; 

  

%Phase 5 energy  

xR5=ab(5); 

xL5=xR4; 

Ep5t=(xR5-xL5); 

iL5=knnsearch(T,xL5); 

iR5=knnsearch(T,xR5); 

Ep5=IncE(iL5:iR5); 

Ep5tot=sum(Ep5); 

Ep5to=Ep5tot/m; 

  

%Phase 6 energy  

xR6=ab(6); 

xL6=xR5; 

Ep6t=(xR6-xL6); 

iL6=knnsearch(T,xL6); 

iR6=knnsearch(T,xR6); 

Ep6=IncE(iL6:iR6); 

Ep6tot=sum(Ep6); 

Ep6to=Ep6tot/m; 

  

%Phase 7 energy  

xR7=ab(7); 

xL7=xR6; 

Ep7t=(xR7-xL7); 

iL7=knnsearch(T,xL7); 

iR7=knnsearch(T,xR7); 

Ep7=IncE(iL7:iR7); 

Ep7tot=sum(Ep7); 

Ep7to=Ep7tot/m; 

  

%Phase 8 energy  

xR8=ab(8); 

xL8=xR7; 

Ep8t=(xR8-xL8); 

iL8=knnsearch(T,xL8); 

iR8=knnsearch(T,xR8); 

Ep8=IncE(iL8:iR8); 

Ep8tot=sum(Ep8); 

Ep8to=Ep8tot/m; 

  

%Phase 9 energy  

xR9=ab(9); 

xL9=xR8; 

Ep9t=(xR9-xL9); 

iL9=knnsearch(T,xL9); 

iR9=knnsearch(T,xR9); 

Ep9=IncE(iL9:iR9); 

Ep9tot=sum(Ep9); 

Ep9to=Ep9tot/m; 

  



%Phase 10 energy  

xR10=ab(10); 

xL10=xR9; 

Ep10t=(xR10-xL10); 

iL10=knnsearch(T,xL10); 

iR10=knnsearch(T,xR10); 

Ep10=IncE(iL10:iR10); 

Ep10tot=sum(Ep10); 

Ep10to=Ep10tot/m; 

  

%Phase 11 energy  

xR11=ab(11); 

xL11=xR10; 

Ep11t=(xR11-xL11); 

iL11=knnsearch(T,xL11); 

iR11=knnsearch(T,xR11); 

Ep11=IncE(iL11:iR11); 

Ep11tot=sum(Ep11); 

Ep11to=Ep11tot/m; 

  

%phase 12 energy  

xR12=ab(12); 

xL12=xR11; 

Ep12t=(xR12-xL12); 

iL12=knnsearch(T,xL12); 

iR12=knnsearch(T,xR12); 

Ep12=IncE(iL12:iR12); 

Ep12tot=sum(Ep12); 

Ep12to=Ep12tot/m; 

  

  

  

%Phase 13 energy  

xR13=ab(13); 

xL13=xR12; 

Ep13t=(xR13-xL13); 

iL13=knnsearch(T,xL13); 

iR13=knnsearch(T,xR13); 

Ep13=IncE(iL13:iR13); 

Ep13tot=sum(Ep13); 

Ep13to=Ep13tot/m; 

  

  

%Phase 14 energy  

xR14=ab(14); 

xL14=xR13; 

Ep14t=(xR14-xL14); 

iL14=knnsearch(T,xL14); 

iR14=knnsearch(T,xR14); 

Ep14=IncE(iL14:iR14); 

Ep14tot=sum(Ep14); 

Ep14to=Ep14tot/m; 



  

%Phase 15 energy  

xR15=ab(15); 

xL15=xR14; 

Ep15t=(xR15-xL15); 

iL15=knnsearch(T,xL15); 

iR15=knnsearch(T,xR15); 

Ep15=IncE(iL15:iR15); 

Ep15tot=sum(Ep15); 

Ep15to=Ep15tot/m; 

  

%Phase 16 energy  

xR16=ab(16); 

xL16=xR15; 

Ep16t=(xR16-xL16); 

iL16=knnsearch(T,xL16); 

iR16=knnsearch(T,xR16); 

Ep16=IncE(iL16:iR16); 

Ep16tot=sum(Ep16); 

Ep16to=Ep16tot/m; 

  

  

%Phase 17 energy  

xR17=ab(17); 

xL17=xR16; 

Ep17t=(xR17-xL17); 

iL17=knnsearch(T,xL17); 

iR17=knnsearch(T,xR17); 

Ep17=IncE(iL17:iR17); 

Ep17tot=sum(Ep17); 

Ep17to=Ep17tot/m; 

  

%Phase 18 energy  

xR18=ab(18); 

xL18=xR17; 

Ep18t=(xR18-xL18); 

iL18=knnsearch(T,xL18); 

iR18=knnsearch(T,xR18); 

Ep18=IncE(iL18:iR18); 

Ep18tot=sum(Ep18); 

Ep18to=Ep18tot/m; 

  

%Phase 19 energy  

xR19=ab(19); 

xL19=xR18; 

Ep19t=(xR19-xL19); 

iL19=knnsearch(T,xL19); 

iR19=knnsearch(T,xR19); 

Ep19=IncE(iL19:iR19); 

Ep19tot=sum(Ep19); 

Ep19to=Ep19tot/m; 

  



%Phase 20 energy  

xR20=ab(20); 

xL20=xR19; 

Ep20t=(xR20-xL20); 

iL20=knnsearch(T,xL20); 

iR20=knnsearch(T,xR20); 

Ep20=IncE(iL20:iR20); 

Ep20tot=sum(Ep20); 

Ep20to=Ep20tot/m; 

  

%Phase 21 energy  

xR21=ab(21); 

xL21=xR20; 

Ep21t=(xR21-xL21); 

iL21=knnsearch(T,xL21); 

iR21=knnsearch(T,xR21); 

Ep21=IncE(iL21:iR21); 

Ep21tot=sum(Ep21); 

Ep21to=Ep21tot/m; 

  

%Phase 22 energy  

xR22=ab(22); 

xL22=xR21; 

Ep22t=(xR22-xL22); 

iL22=knnsearch(T,xL22); 

iR22=knnsearch(T,xR22); 

Ep22=IncE(iL22:iR22); 

Ep22tot=sum(Ep22); 

Ep22to=Ep22tot/m; 

  

%Phase 23 energy  

xR23=ab(23); 

xL23=xR22; 

Ep23t=(xR23-xL23); 

iL23=knnsearch(T,xL23); 

iR23=knnsearch(T,xR23); 

Ep23=IncE(iL23:iR23); 

Ep23tot=sum(Ep23); 

Ep23to=Ep23tot/m; 

  

  

fprintf("Phase 1 energy total %f, time %f \n",Ep1tot, Ep1t); 

fprintf("Phase 2 energy total %f, time %f \n",Ep2tot, Ep2t); 

fprintf("Phase 3 energy total %f, time %f \n",Ep3tot, Ep3t); 

fprintf("phase 4 energy total %f, time %f \n",Ep4tot, Ep4t); 

fprintf("Phase 5 energy total %f, time %f \n",Ep5tot, Ep5t); 

fprintf("Phase 6 energy total %f, time %f \n",Ep6tot, Ep6t); 

fprintf("Phase 7 energy total %f, time %f \n",Ep7tot, Ep7t); 

fprintf("Phase 8 energy total %f, time %f \n",Ep8tot, Ep8t); 

fprintf("Phase 9 energy total %f, time %f \n",Ep9tot, Ep9t); 

fprintf("Phase 10 energy total %f, time %f \n",Ep10tot, Ep10t); 

fprintf("Phase 11 energy total %f, time %f \n",Ep11tot, Ep11t); 



fprintf("Phase 12 energy total %f, time %f \n",Ep12tot, Ep12t); 

fprintf("Phase 13 energy total %f, time %f \n",Ep13tot, Ep13t); 

fprintf("Phase 14 energy total %f, time %f \n",Ep14tot, Ep14t); 

fprintf("Phase 15 energy total %f, time %f \n",Ep15tot, Ep15t); 

fprintf("Phase 16 energy total %f, time %f \n",Ep16tot, Ep16t); 

fprintf("Phase 17 energy total %f, time %f \n",Ep17tot, Ep17t); 

fprintf("Phase 18 energy total %f, time %f \n",Ep18tot, Ep18t); 

fprintf("Phase 19 energy total %f, time %f \n",Ep19tot, Ep19t); 

fprintf("Phase 20 energy total %f, time %f \n",Ep20tot, Ep20t); 

fprintf("Phase 21 energy total %f, time %f \n",Ep21tot, Ep21t); 

fprintf("Phase 22 energy total %f, time %f \n",Ep22tot, Ep22t); 

fprintf("Phase 23 energy total %f, time %f \n",Ep23tot, Ep23t); 

  

  

  

fprintf("total energy %f \n", E); 

fprintf("total energy per kilogram: %f \n",TotE); 

  

  

figure; 

plot(T,Pos); 

title("Position vs. time"); 

xlabel("Time (s)"); 

ylabel("Position (m)"); 

 

 

 

 


