
System Analysis 3 Progress Report

Submitted to

Dr. Janiszewska

Prepared by

Nick Stassen,

Matthew Geiger,

Ben Bazan

Engineering 1182

The Ohio State University

College Of Engineering

Newark, OH

March 08, 2022

The results of this experiment demonstrate the capabilities of certain styles of coding. The

celerate command in the AEV_Controller Arduino library lacked not only having a longer run-

time but also indicated significant energy (see Table 1 in Appendix). However, the celerate

command has its advantages: first, it allows for less stress on the motors, you can slowly

increase the power supplied to allow the motors more time to accelerate. However, this

command alone should not be used to control the speed of the AEV. Celerate, as seen in Table

1, used a total of 93 Joules in the flat track run. In comparison, the motorSpeed command, as

seen in Table 2, only used 69 Joules. Additionally, the motorSpeed command code completed

the track 9 seconds faster than the cellerate command code. The celerate command’s purpose

in future code will be restricted to large speed changes such as stopping and starting.

Promising energy usage can be seen with the motorSpeed function, meaning the motorSpeed

command will be used in all cases besides the aforementioned cases. Another reason that

cellerate is detrimental to the success of the AEV’s success is that with large acceleration times

the AEV can pass the position it was trying to go to. Since it has passed the

goToAbsolutePosition value it will not proceed to the next statements and the motors will

continue to run causing catastrophe. This means that the time values for the cellerate command

must be small in order to not exceed a succeeding goToAboslutePosition statement. Figures 2

and 4 show the power vs time graphs for celerate and motorSpeed respectively. Celerate shows

diagonal lines which represent the power increasing or decreasing during acceleration or

deceleration, respectively. The motorSpeed graph shows instant steps in power representing

instantaneous changes in motor power percentage.

To program the half-track run, findings regarding motorSpeed were implemented. The bulk of

the code was focused around using motorSpeed rather than celerate. This is because

motorSpeed is more efficient than celerate as mentioned above. The celerate command was

used for quick speed changes such as slowing down before the turn.

One of the issues that occurred during the flat track run cellerate command code was precision.

Since the code used mostly cellerate commands rather than goToAbsoluteposition commands

the lab group had to guess rather than know for certain where the AEV would be after a certain

amount of time. This resulted in inaccurate positioning of the AEV during important times such

as while the AEV is going around the curve. From this goToAbsolutePosition was found to be a

necessity to complete the mission. From the half-track run the issue of the AEV being positioned

12 inches backward from the start of the 4 ft section arose. This issue if not fixed would cause

the AEV to be 12 inches backward of the desired location. This would cause problems while

going around the curve as well as stopping at necessary locations. The code was then changed

to account for this issue. Another issue that arose during the half-track run was going down the

slope from “the Grand Canyon”, at first the AEV went down the track at a speed that was

unsafe, this was due to the code inadequately accounting for the force of gravity. This was

promptly changed by reducing the power supplied to the motors after the first trial.

Ben Bazan completed the issues and solutions section as well as individual portion for Ben

Bazan (table 4). Nick Stassen completed discussion of results, information learned and then

used for half-track run, and the individual portion for Nick Stassen. Matthew Geiger completed

the MatLab code to convert the EEPROMM data into SI units and created all figures and tables

(other than Nick stassen individual table and Ben Bazan individual table).

(Figure 1) describes the AEV flat track run, supplied power verses position, using cellerate

commands.

(Figure 2) describes the AEV flat track run, supplied power versus time, using celerate

commands. Along with a phase breakdown.

Phase Arduino Code Time (seconds) Total Energy (Joules)

1 celerate(4,0,22,4) 4.562 12.752

2 celerate(4,22,12,6) 5.641 23.303

3 celerate(2,12,22,3) 2.7 11.0299

4 brake(4) 3.72 1.41

5 celerate(4,0,22,6) 5.46 12.754

6 celerate(4,22,12,6) 6.06 22.3278

7 celerate(4,12,22,3) 2.82 9.853

Total 30.963 93.4297

(Table 1) describes the flat track run code using celerate. Total energy used is shown in the

bottom row along with time.

(Figure 3) describes the AEV flat track run, with supplied power versus position, using

motorSpeed commands.

(Figure 4) describes the AEV flat track run, with supplied power versus time, using motorSpeed

commands. Along with a phase break down.

Phase Arduino Code Time (seconds) Total Energy (Joules)

1 motorSpeed(4,22) 4.7 26.917

2 motorSpeed(4,12) 1.3 3.299

3 motorSpeed(4,22) 1 4.6024

4 brake(4) 5 6.101

5 motorSpeed(4,20) 3.5 16.695

6 motorSpeed(4,13) 1.5 3.459

7 motorSpeed(4,20) 4 8.275

Total 21 69.3484

(Table 2) describes the flat track run arduino code phase breakdown. Total energy used is

displayd in the bottom row along with time.

(Figure 5) describes the AEV half-track run supplied power versus time with phase breakdown.

Phase Arduino Code
Time
(seconds)

Energy per Phase
(J)

Distance traveled
(m)

1 motorSpeed(4,45) 2.401 37.86 0-1.26

2 motorSpeed(4,14) 0.901 3.0633 1.26-1.81

3 brake(4) goFor(4) 3.96 0.949 1.81-2.29

4 motorSpeed(4,22) 4.2 22.47 2.29-3.37

5 motorSpeed(4,16) 4.56 13.92 3.37-7.58

6
celerate(4,15,12,1) motor
Speed(4,22) 0.72 3.64 7.58-8.65

7 brake(4) goFor(4) 4.02 0.492 8.65-9.28

8 motorSpeed(4,30) 2.64 23.115 9.28-10.65

9 motorSpeed(4,16) 9.06 30.894 10.65-11.91

 32.462

Total energy per
kilogram
507.07 0-11.91

(Table 3) describes the half-track run Arduino code with phase breakdown. Total energy per

kilogram used is displayed in the bottom row along with total time.

(Figure 6) describes the AEV half-track run with the supplied power versus position.

(Figure 7) displays the AEV half-track run with velocity versus position. Due to EEPROM being

(Figure 8) shows the AEV half-track run with Kinetic energy versus Position.

(Figure 9) presents the AEV half-track run with propulsion efficiency versus advance ratio.

Ben Bazan sample calculations for flat
track run at 3.002 s

 pj=5.95767

 Vr=2.46 pj+1=6.049

 te=3002 marks=75 pos=-73 Ie=58 Ve=54 tj=3.002

 tj+1=3.062

 Time Distance Position Current Voltage
Supplied
Power

Incremental
Energy

Equation t=te/1000
d=0.0124*
marks

s=0.0124*
pos

I=(Ie/1024)*V

r*(1
amp/0.185
volts)

V=(15*V

e)/1024 P=V*I
Ej=(Pj+Pj+i)/2
*(tj+1-tj)

Results 3.002 0.93 -0.9052 0.75316723
7.91015
625

5.95767
047

0.36020509
4

(Table 4) Ben Bazan sample calculations for flat track run at 3.002 seconds.

 Time Distance Relative
position

Current Voltage Supplied
Power

Incremental
Energy

 te = 10023 marks =

460

relative

marks =
-458

Ie = 2 Ve = 553 (derived) (derived)

Equation t = te/1000 d = 0.0124
* marks

s = 0.0124
* relative

marks

I=(Ie/1024)*
Vr*(1

amp/0.185
volts)

V=(15*Ve

)/1024
P = V * I Ej=(Pj+Pj+i)/2*

(tj+1-tj)

Results 10.023 5.704 -5.6792 0.025971 8.10058 0.21038

0.009467

(Table 5) Nick Stassen sample calculations for flat track run at 10.023 seconds.

 Time Distanc
e

Relativ
e
positio
n

Current Voltage Supplie
d
Power

Incremental
Energy

 te =
6543

marks =
297

relative
marks =

-458

Ie = 20 Ve = 548 (derived
)

(derived)

Equatio
n

t =
te/100
0

d =
0.0124 *
marks

s =
0.0124
*

relative
marks

I=(Ie/1024)*Vr*
(1 amp/0.185
volts)

V=(15*Ve)/10
24

P = V * I Ej=(Pj+Pj+i)/2*(tj+
1-tj)

Results 6.543 5.704 2.294 0.259713 8.027 2.0848 0.26517

(Table 6) Matthew Geiger sample calculations for flat track run at 6.58 seconds.

